
Computer Lab, Introduction to Bioinformatics (ARCAID course):
scRNA-seq data analysis

Perry Moerland

Wednesday, March 9, 2022

1 Preliminaries
In these computer exercises you will mainly use the statistical software package R. Since we will focus on just
running the code and interpretation of the results, no previous exposure to R is required. If you want to
learn more about R, see our Amsterdam UMC Doctoral School course Computing in R.

The goal of this computer lab is to give you an overview of some of the steps typically applied when analyzing
scRNA-seq data:

• Quality control and filtering
• Normalization and feature selection
• Dimensionality reduction and visualization
• Clustering
• Cell annotation

1.1 Setting up R
First download the Rmd (Rmarkdown) file and open it in RStudio (Alle programma’s - R - RStudio, and
‘Ignore Update’). If you didn’t do so yet, first install the different R packages that you’ll need. In order
to execute R code from within RStudio, just click the green arrow head in the chunk of code shown below or
put the cursor somewhere in the chunk and select Run - Run Current Chunk from the menu. You can also
execute code line-by-line using Ctrl-Enter:
If you didn't do so yet, first install the required packages and their dependencies.
Installation of packages might take a few minutes
If in the console you are asked "Update all/some/none? [a/s/n]:". Just reply "n"
install.packages("BiocManager")

package 'BiocManager' successfully unpacked and MD5 sums checked
#
The downloaded binary packages are in
C:\Users\pdmoerland\AppData\Local\Temp\Rtmp8cKOcr\downloaded_packages
BiocManager::install(c("Seurat","hdf5r","dplyr","ggplot2","alluvial","bioDist"))

Now load the libraries so that you can use the functions defined in them:
library(Seurat)
library(dplyr)
library(ggplot2)
library(alluvial)
library(bioDist)

1

https://bioinformaticslaboratory.eu/education/gs-computing-in-r/
https://bioinformaticslaboratory.eu/wp-content/uploads/ARCAID_scRNAseq.rmd

1.2 Datasets
For this tutorial we will use three different PBMC datasets from the 10x Genomics website.

• 1k PBMCs using 10X v2 chemistry
• 1k PBMCs using 10X v3 chemistry
• 1k PBMCs using 10X v3 chemistry in combination with cell surface proteins, but disregarding the

protein data and only looking at gene expression.

1.3 Downloading and importing the data and creating a Seurat object
Here, we download the data and then use the function Read10X_h5 of the Seurat package to read in the
expression matrices. R stores these matrices as sparse matrix objects, which are essentially memory-efficient
tables of values. In this case the values represent the RNA counts in each cell.
urlroot <-
"https://github.com/LeidenCBC/MGC-BioSB-SingleCellAnalysis2021/raw/main/session-qc-normalization/"

dir.create("./data/")
file_list <- c("pbmc_1k_v3_filtered_feature_bc_matrix.h5",

"pbmc_1k_v2_filtered_feature_bc_matrix.h5",
"pbmc_1k_protein_v3_filtered_feature_bc_matrix.h5")

for (i in file_list) {
download.file(url = paste0(urlroot, i), destfile = paste0("./data/", i), mode = "wb")

}
setwd("data")
v3.1k <- Read10X_h5("pbmc_1k_v3_filtered_feature_bc_matrix.h5")
v2.1k <- Read10X_h5("pbmc_1k_v2_filtered_feature_bc_matrix.h5")
p3.1k <- Read10X_h5("pbmc_1k_protein_v3_filtered_feature_bc_matrix.h5")

Genome matrix has multiple modalities, returning a list of matrices for this genome
select only gene expression data and exclude the cell surface protein (CITE-seq) data.
p3.1k <- p3.1k$`Gene Expression`
setwd("..")

Note that in R you can obtain a detailed explanation of a function by typing ? followed by the name of the
function in the Console window, for example ?Read10X_h5.

Rather than working directly with matrices, Seurat works with custom objects that wrap around them.
These Seurat objects also conveniently contain tables of metadata for the cells and features, which avoids the
clutter of managing them as separate objects. As we will see later, normalized expression values are stored
in a separate matrix within the Seurat object, which allows us to play around with different normalization
strategies without manually keeping a backup of the original values. In addition to RNA counts, we are
able to store additional data types (termed assays) within the Seurat object, such as protein measurements
measured by CITE-seq, though we will stick to the default RNA assay here.

First, create Seurat objects for each of the datasets, and then merge into one large Seurat object. We will use
the cell metadata to keep track of which dataset the cell originated from.
sdata.v2.1k <- CreateSeuratObject(v2.1k, project = "v2.1k")
sdata.v3.1k <- CreateSeuratObject(v3.1k, project = "v3.1k")
sdata.p3.1k <- CreateSeuratObject(p3.1k, project = "p3.1k")
Merge into one single Seurat object. +
Prefix cell ids with dataset name (`all.cell.ids`) just in case you have
overlapping barcodes between the datasets.
alldata <- merge(sdata.v2.1k, c(sdata.v3.1k, sdata.p3.1k), add.cell.ids=c("v2.1k","v3.1k","p3.1k"))
Also add in a metadata column that indicates v2 vs v3 chemistry.
chemistry <- rep("v3", ncol(alldata))

2

https://support.10xgenomics.com/single-cell-gene-expression/datasets

chemistry[Idents(alldata) == "v2.1k"] <- "v2"
alldata <- AddMetaData(alldata, chemistry, col.name = "Chemistry")
alldata

An object of class Seurat
33538 features across 2931 samples within 1 assay
Active assay: RNA (33538 features, 0 variable features)

The metadata of the Seurat object, which itself is a data frame, can be accessed using the slot operator
(@) like so alldata@meta.data. Alternatively one can call the object with double empty square brackets:
alldata[[]]. Another slot to be aware of is alldata@active.ident, or alternatively Idents(alldata),
which stores a column of the metadata that should be used to identify groups of cells. The value of the identities
are by default chosen to be whatever is passed to the project parameter in the CreateSeuratObject call,
and is stored in the orig.ident column of the metadata object. We are free to change the column that
represents the cell identities but for this tutorial (and in the general case) we keep it as is.

Let’s check number of cells from each dataset using the Idents.
table(Idents(alldata))

#
p3.1k v2.1k v3.1k
713 996 1222

Let’s also have a look at part of the count data.
as.matrix(alldata[["RNA"]]@counts[1:10, 1:5])

v2.1k_AAACCTGAGCGCTCCA-1 v2.1k_AAACCTGGTGATAAAC-1
MIR1302-2HG 0 0
FAM138A 0 0
OR4F5 0 0
AL627309.1 0 0
AL627309.3 0 0
AL627309.2 0 0
AL627309.4 0 0
AL732372.1 0 0
OR4F29 0 0
AC114498.1 0 0
v2.1k_AAACGGGGTTTGTGTG-1 v2.1k_AAAGATGAGTACTTGC-1
MIR1302-2HG 0 0
FAM138A 0 0
OR4F5 0 0
AL627309.1 0 0
AL627309.3 0 0
AL627309.2 0 0
AL627309.4 0 0
AL732372.1 0 0
OR4F29 0 0
AC114498.1 0 0
v2.1k_AAAGCAAGTCTCTTAT-1
MIR1302-2HG 0
FAM138A 0
OR4F5 0
AL627309.1 0
AL627309.3 0
AL627309.2 0

3

AL627309.4 0
AL732372.1 0
OR4F29 0
AC114498.1 0

Question 1 What do the columns and rows correspond to? How can you see that this is probably data
corresponding to an scRNA-seq experiment?

Let’s now show the 10 genes that are on average most highly expressed.
indx <- order(rowSums(alldata[["RNA"]]@counts),decreasing = TRUE)[1:10]
as.matrix(sdata.v3.1k[["RNA"]]@counts[indx, 1:5])

AAACCCAAGGAGAGTA-1 AAACGCTTCAGCCCAG-1 AAAGAACAGACGACTG-1
MALAT1 182 243 271
MT-CO1 186 76 56
MT-CO3 157 73 47
MT-CO2 90 50 38
EEF1A1 67 85 53
MT-ATP6 88 56 30
B2M 84 29 81
RPS27 19 69 70
TMSB4X 74 16 51
MT-ND3 82 54 14
AAAGAACCAATGGCAG-1 AAAGAACGTCTGCAAT-1
MALAT1 159 275
MT-CO1 25 52
MT-CO3 22 107
MT-CO2 20 37
EEF1A1 24 116
MT-ATP6 24 53
B2M 53 99
RPS27 32 103
TMSB4X 23 69
MT-ND3 15 48

Question 2 Is there a particular class of genes that seems consistently highly expressed? Is this something
to worry about? If so, why?

2 Quality control (QC)
Before analysing the single-cell gene expression data, we must ensure that all cellular barcode data correspond
to viable cells. Cell QC is commonly performed based on three QC covariates:

1. The number of UMIs per barcode (count depth);
2. The number of expressed genes per barcode;
3. The fraction of counts from mitochondrial genes per barcode.

The distributions of these QC covariates are examined for outlier values that are then filtered out by
thresholding. These outlier barcodes can correspond to dying cells, cells whose membranes are broken, or
doublets.

On object creation, Seurat automatically calculates the first two of these QC statistics namely the number
of UMIs and the number of expressed genes (features) per cell. This information is stored in the columns
nCount_RNA and nFeature_RNA of the metadata, respectively.
head(alldata@meta.data)

4

orig.ident nCount_RNA nFeature_RNA Chemistry
v2.1k_AAACCTGAGCGCTCCA-1 v2.1k 6631 2029 v2
v2.1k_AAACCTGGTGATAAAC-1 v2.1k 2196 881 v2
v2.1k_AAACGGGGTTTGTGTG-1 v2.1k 2700 791 v2
v2.1k_AAAGATGAGTACTTGC-1 v2.1k 3551 1183 v2
v2.1k_AAAGCAAGTCTCTTAT-1 v2.1k 3080 1333 v2
v2.1k_AAAGCAATCCACGAAT-1 v2.1k 5769 1556 v2

Note that the _RNA suffix is due to the aforementioned potential to hold multiple assays. The default assay
is named RNA, accessible by alldata[["RNA"]] or using the assays slot alldata@assays$RNA, which is by
default set to be the standard active assay (see alldata@active.assay). Effectively this means that any
calls that are done on the Seurat object are applied on the RNA assay data.

2.1 Calculate mitochondrial proportion
We manually calculate the proportion of mitochondrial reads and add it to the metadata table. Mitochondrial
genes start with a MT- prefix.
percent.mito <- PercentageFeatureSet(alldata, pattern = "ˆMT-")
alldata <- AddMetaData(alldata, percent.mito, col.name = "percent.mito")

2.2 Calculate ribosomal proportion
In the same manner we calculate the proportion of the counts that come from genes coding for ribosomal
proteins, identified by the RPS and RPL prefixes.
percent.ribo <- PercentageFeatureSet(alldata, pattern = "ˆRP[SL]")
alldata <- AddMetaData(alldata, percent.ribo, col.name = "percent.ribo")

Now have another look at the metadata table.
head(alldata@meta.data)

orig.ident nCount_RNA nFeature_RNA Chemistry
v2.1k_AAACCTGAGCGCTCCA-1 v2.1k 6631 2029 v2
v2.1k_AAACCTGGTGATAAAC-1 v2.1k 2196 881 v2
v2.1k_AAACGGGGTTTGTGTG-1 v2.1k 2700 791 v2
v2.1k_AAAGATGAGTACTTGC-1 v2.1k 3551 1183 v2
v2.1k_AAAGCAAGTCTCTTAT-1 v2.1k 3080 1333 v2
v2.1k_AAAGCAATCCACGAAT-1 v2.1k 5769 1556 v2
percent.mito percent.ribo
v2.1k_AAACCTGAGCGCTCCA-1 5.172674 25.84829
v2.1k_AAACCTGGTGATAAAC-1 4.143898 20.81056
v2.1k_AAACGGGGTTTGTGTG-1 3.296296 51.55556
v2.1k_AAAGATGAGTACTTGC-1 5.885666 29.25936
v2.1k_AAAGCAAGTCTCTTAT-1 2.987013 17.53247
v2.1k_AAAGCAATCCACGAAT-1 2.010747 45.69249

2.3 QC plots
Now we can plot some of the QC measures as violin plots. Note that Seurat by default will generate a violin
plot per identity class.
VlnPlot(alldata, features = c("nFeature_RNA", "nCount_RNA", "percent.mito", "percent.ribo"),

ncol = 2, pt.size = 0.1) + NoLegend()

5

0

2000

4000

6000

8000

p3
.1

k
v2

.1
k

v3
.1

k

Identity

nFeature_RNA

0

20000

40000

60000

80000

p3
.1

k
v2

.1
k

v3
.1

k

Identity

nCount_RNA

0

25

50

75

100

p3
.1

k
v2

.1
k

v3
.1

k

Identity

percent.mito

0

20

40

60

p3
.1

k
v2

.1
k

v3
.1

k

Identity

percent.ribo

As you can see, the v2 chemistry gives lower gene detection, but higher detection of ribosomal genes. As the
ribosomal genes are highly expressed they will make up a larger proportion of the transcriptional landscape
when fewer of the lowly expressed genes are detected.

We can also plot the different QC measures as scatter plots.
p1 <- FeatureScatter(alldata, feature1 = "nCount_RNA", feature2 = "nFeature_RNA") + NoLegend()
p2 <- FeatureScatter(alldata, feature1 = "nFeature_RNA", feature2 = "percent.mito") + NoLegend()
p3 <- FeatureScatter(alldata, feature1="percent.ribo", feature2="nFeature_RNA")
p1 + p2 + p3

0

2000

4000

6000

8000

0 20000 40000 60000 80000
nCount_RNA

nF
ea

tu
re

_R
N

A

0.93

0

25

50

75

100

0 2000 4000 6000 8000
nFeature_RNA

pe
rc

en
t.m

ito

−0.3

0

2000

4000

6000

8000

0 20 40 60
percent.ribo

nF
ea

tu
re

_R
N

A

Identity

p3.1k
v2.1k
v3.1k

−0.11

We can also subset the data to only plot one sample.
FeatureScatter(alldata, feature1 = "nCount_RNA", feature2 = "nFeature_RNA",

cells = WhichCells(alldata, expression = orig.ident == "v3.1k"))

6

0

2000

4000

6000

0 20000 40000
nCount_RNA

nF
ea

tu
re

_R
N

A
Identity

v3.1k

0.91

2.4 Filtering
2.4.1 Mitochondrial filtering

We have quite a lot of cells with a high percentage of mitochondrial reads. As indicated above, it could be wise
to remove those cells, if we have enough cells left after filtering. Another option would be to either remove all
mitochondrial reads from the dataset and hope that the remaining genes still have enough biological signal.

In this case we have as much as 99.7% mitochondrial reads in some of the cells, so it is quite unlikely that
there is much cell type signature left in those.

By eyeballing the plots we can make reasonable decisions on where to draw the cutoff. In this case, the bulk
of the cells are below 25% mitochondrial reads and that will be used as a cutoff.
Select cells with percent.mito < 25
idx <- which(alldata$percent.mito < 25)
selected <- WhichCells(alldata, cells = idx)
length(selected)

[1] 2703
and subset the object to only keep those cells.
data.filt <- subset(alldata, cells = selected)
plot violins for new data
VlnPlot(data.filt, features = "percent.mito")

7

0

5

10

15

20

p3
.1

k
v2

.1
k

v3
.1

k

Identity

p3.1k
v2.1k
v3.1k

percent.mito

As you can see, there is still quite a lot of variation in percent.mito, so it will have to be dealt with in later
data analysis steps (not shown in this computer lab).

Question 3 What is the consequence of choosing a too stringent cutoff for the percentage of mitochondrial
reads? And of choosing a too relaxed cutoff?

2.4.2 Gene detection filtering

An extremely high number of detected genes could indicate a doublet, that is, a barcode tagging multiple cells.
However, depending on the cell type composition in your sample, you may have cells with higher number of
genes (and also higher counts) for some cell types.

In our datasets, we observe a clear difference between the v2 vs v3 10x chemistry with regards to gene
detection, so it may not be fair to apply the same cutoffs to all of them.

Also, in the p3.1k data there are a lot of cells with few detected genes giving a bimodal distribution. This
type of distribution is not seen in the other two datasets. Considering that they are all PBMC datasets, it
makes sense to regard this distribution as low quality libraries.

Filter the cells with high gene detection (putative doublets) with cutoffs 4100 for v3 chemistry and 2000 for
v2.
Start with cells with many genes detected.
high.det.v3 <- WhichCells(data.filt, expression = nFeature_RNA > 4100)
high.det.v2 <- WhichCells(data.filt, expression = nFeature_RNA > 2000 & orig.ident == "v2.1k")
Remove these cells.
data.filt <- subset(data.filt, cells=setdiff(WhichCells(data.filt),c(high.det.v2,high.det.v3)))
Check number of cells.
ncol(data.filt)

[1] 2631

Filter the cells with low gene detection (low quality libraries) with less than 1000 genes for v2 and less than
500 for v2.
Start with cells with few genes detected.
low.det.v3 <- WhichCells(data.filt, expression = nFeature_RNA < 1000 & orig.ident != "v2.1k")
low.det.v2 <- WhichCells(data.filt, expression = nFeature_RNA < 500 & orig.ident == "v2.1k")
remove these cells
data.filt <- subset(data.filt, cells=setdiff(WhichCells(data.filt),c(low.det.v2,low.det.v3)))

8

check number of cells
ncol(data.filt)

[1] 2531

2.5 Plot QC statistics again
Let’s plot the same QC statistics once more after filtering.
VlnPlot(data.filt, features = c("nFeature_RNA", "nCount_RNA", "percent.mito", "percent.ribo"),

ncol = 2, pt.size = 0.1) + NoLegend()
and check the number of cells per sample before and after filtering
table(Idents(alldata))

#
p3.1k v2.1k v3.1k
713 996 1222
table(Idents(data.filt))

#
p3.1k v2.1k v3.1k
526 933 1072

1000

2000

3000

4000

p3
.1

k
v2

.1
k

v3
.1

k

Identity

nFeature_RNA

0

10000

20000

30000

p3
.1

k
v2

.1
k

v3
.1

k

Identity

nCount_RNA

0

5

10

15

20

p3
.1

k
v2

.1
k

v3
.1

k

Identity

percent.mito

0

20

40

60

p3
.1

k
v2

.1
k

v3
.1

k

Identity

percent.ribo

3 Normalization and feature selection
Each count in a count matrix represents the successful capture, reverse transcription and sequencing of a
molecule of cellular mRNA. Count depths for identical cells can differ due to the variability inherent in each
of these steps. Thus, when gene expression is compared between cells based on count data, any difference
may have arisen solely due to sampling effects. Normalization addresses this issue by e.g. scaling count data
to obtain correct relative gene expression abundances between cells.

To speed things up, we will continue working with the v3.1k dataset only.

9

3.1 Normalization: Log
In the default normalization method in Seurat, counts for each cell are divided by the total counts for that
cell and multiplied by the scale factor 10,000. The result is then log transformed.

Here we first select the filtered data from just the v3.1k dataset and then normalize it.
pbmc.seu <- subset(x = data.filt, idents = "v3.1k")
pbmc.seu <- NormalizeData(pbmc.seu)

3.2 Feature selection
The default method in Seurat is variance-stabilizing transformation. A trend is fitted to to predict the
variance of each gene as a function of its mean. For each gene, the variance of standardized values is computed
across all cells and used to rank the features. By default, 2000 top genes are returned.
pbmc.seu <- FindVariableFeatures(pbmc.seu, selection.method = "vst")
top10 <- head(VariableFeatures(pbmc.seu), 10)
vplot <- VariableFeaturePlot(pbmc.seu)
LabelPoints(plot = vplot, points = top10, repel = TRUE, xnudge = 0, ynudge = 0)

GNLY

IGLC2

IGLC3

FCGR3A
S100A9

CDKN1C S100A8

GZMB
ITM2C LYZ

0

5

10

15

1e−02 1e+00 1e+02
Average Expression

S
ta

nd
ar

di
ze

d
V

ar
ia

nc
e

Non−variable count: 31538
Variable count: 2000

Question 4 Can you explain why most of the genes indicated by their symbol in the figure are detected as
highly variable genes?

Seurat automatically stores the feature metrics in the metadata of the assay.
head(pbmc.seu[["RNA"]][[]])

vst.mean vst.variance vst.variance.expected
MIR1302-2HG 0.0000000000 0.0000000000 0.0000000000
FAM138A 0.0000000000 0.0000000000 0.0000000000
OR4F5 0.0000000000 0.0000000000 0.0000000000
AL627309.1 0.0055970149 0.0055708851 0.0060999579
AL627309.3 0.0009328358 0.0009328358 0.0009326186
AL627309.2 0.0000000000 0.0000000000 0.0000000000
vst.variance.standardized vst.variable
MIR1302-2HG 0.0000000 FALSE
FAM138A 0.0000000 FALSE
OR4F5 0.0000000 FALSE
AL627309.1 0.9132661 FALSE
AL627309.3 1.0002329 FALSE
AL627309.2 0.0000000 FALSE

10

3.3 Saving the data
We save the Seurat object for future analysis downstream.
saveRDS(pbmc.seu, file = "pbmc3k_featsel.rds")

4 Dimensionality reduction
A human single-cell RNA-seq dataset can contain expression values for up to 25,000 genes. Many of these
genes will not be informative for a given scRNA-seq dataset, and many genes will mostly contain zero counts.
Even after filtering out these zero count genes in the QC step, the feature space for a single-cell dataset can
have over 15,000 dimensions. To ease the computational burden on downstream analysis tools, reduce the
noise in the data, and to visualize the data, one can use several approaches to reduce the dimensionality of
the dataset.

In this section we will look at different ways to visualize single cell RNA-seq datasets using dimensionality
reduction. We will apply Principal Component Analysis (PCA), t-distributed Stochastic Neighbor Embedding
(t-SNE) and Uniform Manifold Approximation and Projection (UMAP) algorithms. Further, we will look at
different ways to plot the dimensionality reduced data and augment them with additional information, such
as gene expression or meta-information.

4.1 Data loading and preprocessing
We continue with the v3.1k dataset, which you have preprocessed in the previous section. We will also add
cell type labels for visualization purposes. Later, you will see an example of how to annotate the cells yourself.

First, we load the Seurat object from the previous section and attach the cell type labels.
pbmc <- readRDS('pbmc3k_featsel.rds')
download.file(
"https://raw.githubusercontent.com/LeidenCBC/MGC-BioSB-SingleCellAnalysis2021/main/session-dimensionalityreduction/celltype_labels.tsv",
destfile = "data/celltype_labels.tsv")

labels <- read.delim("data/celltype_labels.tsv", row.names = 1, stringsAsFactors = FALSE)
rownames(labels) <- paste0("v3.1k_", rownames(labels))
pbmc <- AddMetaData(

object = pbmc,
metadata = labels)

Leave out cells without annotation
selected <- WhichCells(pbmc, cells = which(!is.na(pbmc$celltype)))
pbmc <- subset(pbmc, cells = selected)

Since the data has already been normalized in the previous section, we can skip these steps here. We only
need to scale the data.
Run the standard workflow for visualization and clustering
pbmc <- ScaleData(pbmc, verbose = FALSE)

4.2 Principal component analysis
From here on, we will have a look at the different dimensionality reduction methods and their parameterizations.

We start with PCA. Seurat provides the RunPCA function, we use pbmc as input data. npcs refers to the
number of principal components to compute. We set it to 100. This will take a bit longer to compute but
will allow us to explore the effect of using different numbers of PCs below. By assigning the result to our
pbmc data object it will be available in the object with the default name pca.

11

pbmc <- RunPCA(pbmc, npcs = 100, verbose = FALSE)

We can now plot the first two components using the DimPlot function. The first argument here is the Seurat
data object pbmc. By providing the Rreduction = "pca" argument, DimPlot looks in the object for the
PCA we created and assigned above.
DimPlot(pbmc, reduction = "pca")

−10

0

10

20

−30 −20 −10 0 10
PC_1

P
C

_2

v3.1k

This plot shows some structure of the data. Every dot is a cell, but we do not know which cells belong to
which dot, etc. We can add meta information by the group.by parameter. We use the celltype that we
have included in the metadata.
DimPlot(pbmc, reduction = "pca", group.by = "celltype")

12

−10

0

10

20

−30 −20 −10 0 10
PC_1

P
C

_2

B cell
CD4 T cell
CD8 T cell
Dendritic cell
Monocyte
NK cell

celltype

We can see that only a few of the labeled cell types separate well but many are clumped together on the
bottom of the plot.

Let’s have a look at the PCs to understand a bit better how PCA separates the data. Using the DimHeatmap
function, we can plot the expression of the top genes for each PC for a number of cells. We plot the first six
components dims = 1:6 for 500 top cells cells = 500. Each component produces one heatmap, the cells
are the columns in the heatmap and the top genes for each component the rows.
DimHeatmap(pbmc, dims = 1:6, cells = 500, balanced = TRUE)

13

LTB
CD3E
TRAC
TRBC2
CD3D
IL32
TCF7
IL7R
CD3G
CD69
ISG20
CD27
CD247
ARL4C
SPOCK2
AIF1
CD68
CSTA
PSAP
NCF2
VCAN
SERPINA1
CTSS
S100A8
FGL2
MNDA
CST3
S100A9
FCN1
LYZ

PC_1

CD79A
MS4A1
IGHM
HLA−DQA1
BANK1
CD79B
LINC00926
HLA−DQB1
CD74
IGHD
CD22
HLA−DRB1
HLA−DRA
HLA−DPA1
HLA−DQA2
IL7R
NKG7
TRAC
LAT
CD3G
GZMA
S100A4
ANXA1
CTSW
CD7
CD3D
GZMM
CD247
IL32
CD3E

PC_2

GZMB
CLIC3
NKG7
GNLY
KLRD1
KLRF1
PRF1
CST7
SPON2
FGFBP2
GZMA
ADGRG1
HOPX
CCL4
TRDC
PASK
RGS10
CD3G
CAMK4
TRAC
CD3D
LTB
NOSIP
CCR7
IL7R
RCAN3
TRABD2A
MAL
TCF7
LEF1

PC_3

SERPINF1
LILRA4
SMPD3
CLEC4C
SCT
LRRC26
IL3RA
SMIM5
PACSIN1
AL096865.1
TPM2
GAS6
NOTCH4
PTCRA
MAP1A
MATK
TBX21
TRDC
CD79B
HOPX
GZMA
CCL4
ADGRG1
NKG7
KLRF1
PRF1
CST7
FGFBP2
KLRD1
GNLY

PC_4

S100A12
ALOX5AP
NCF1
PLBD1
PADI4
CYP1B1
MCEMP1
QPCT
CRISPLD2
AC020656.1
VCAN
VNN2
ITGAM
MEGF9
RAB27A
IFI30
CSF1R
MTSS1
FMNL2
C3AR1
SMIM25
MS4A4A
SIGLEC10
CKB
ZNF703
FCGR3A
NEURL1
TCF7L2
HES4
CDKN1C

PC_5

TUBB1
GNG11
CAVIN2
PF4
PPBP
PRKAR2B
MPIG6B
FAXDC2
MYLK
AQP10
PEAR1
GP9
THBS1
GP1BA
C2orf88
ZFAT
AL096865.1
DERL3
LRRC26
NOTCH4
SCT
MYBL2
DNASE1L3
CUX2
CIB2
IL3RA
SMPD3
SERPINF1
LILRA4
CLEC4C

PC_6

In these heatmaps it is easy to see thatt the first few PCs have clear-cut expression differences for the
genes most affecting the principal components. The distinction becomes less clear for more distant principal
components.

As discussed in the lecture, and indicated above, PCA is not optimal for visualization, but can be very helpful
in reducing the complexity before applying non-linear dimensionality reduction methods. For that, let’s have
a look how many PCs actually cover the main variation. A very simple, fast-to-compute way is simply looking
at the standard deviation per PC. We use the ElbowPlot.
ElbowPlot(pbmc, ndims = 100)

4

8

12

16

0 25 50 75 100
PC

S
ta

nd
ar

d
D

ev
ia

tio
n

As we can see there is a very steep drop in standard deviation within the first 20 or so PCs indicating that we
will likely be able to use roughly that number of PCs as input to following computations with little impact
on the results.

14

4.3 t-SNE
Let’s try out t-SNE. Seurat by default uses the Barnes Hut (BH) SNE implementation.

Similar to the PCA, Seurat provides a convenient function to run t-SNE called RunTSNE. We provide the
pbmc data object as parameter. By default RunTSNE will look for and use the PCA we created above as
input, we can also force it with reduction = "pca". Again we use DimPlot to plot the result, this time
using reduction = "tsne" to indicate that we want to plot the t-SNE computation. We create two plots,
the first without and the second with the cell types used for grouping. Already without the coloring, we can
see much more structure in the plot than in the PCA plot. With the color overlay we see that most cell types
are nicely separated in the plot.
pbmc <- RunTSNE(pbmc, reduction = "pca")
p1 <- DimPlot(pbmc, reduction = "tsne") + NoLegend()
p2 <- DimPlot(pbmc, reduction = "tsne", group.by = "celltype")
p1 + p2

−20

0

20

40

−30 −20 −10 0 10 20 30
tSNE_1

tS
N

E
_2

−20

0

20

40

−30 −20 −10 0 10 20 30
tSNE_1

tS
N

E
_2

B cell
CD4 T cell
CD8 T cell
Dendritic cell
Monocyte
NK cell

celltype

Above we did not specify the number of PCs to use as input. Let’s have a look what happens with different
numbers of PCs as input. We simply run RunTSNE multiple times with dims defining a range of PCs. Note
every run overwrites the tsne object nested in the pbmc object. Therefore we plot the tsne directly after each
run and store all plots in a object. We add + NoLegend() + ggtitle("n PCs") to remove the list of cell
types for compactness and add a title.
PC_1 to PC_5
pbmc <- RunTSNE(pbmc, reduction = "pca", dims = 1:5)
p1 <- DimPlot(pbmc, reduction = "tsne", group.by = "celltype") + NoLegend() + ggtitle("5 PCs")
PC_1 to PC_10
pbmc <- RunTSNE(pbmc, reduction = "pca", dims = 1:10)
p2 <- DimPlot(pbmc, reduction = "tsne", group.by = "celltype") + NoLegend() + ggtitle("10 PCs")
PC_1 to PC_30
pbmc <- RunTSNE(pbmc, reduction = "pca", dims = 1:30)
p3 <- DimPlot(pbmc, reduction = "tsne", group.by = "celltype") + NoLegend() + ggtitle("30 PCs")
PC_1 to PC_100
pbmc <- RunTSNE(pbmc, reduction = "pca", dims = 1:100)
p4 <- DimPlot(pbmc, reduction = "tsne", group.by = "celltype") + NoLegend() + ggtitle("100 PCs")
p1 + p2 + p3 + p4

15

https://arxiv.org/abs/1301.3342

−20

0

20

40

−30 −20 −10 0 10 20 30
tSNE_1

tS
N

E
_2

5 PCs

−20

0

20

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

10 PCs

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

30 PCs

−20

−10

0

10

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

100 PCs

Looking at these plots, it seems RunTSNE by default only uses 5 PCs (the plot is identical to the plot with
default parameters above), but we get much clearer separation of clusters using 10 or even 30 PCs. This is not
surprising considering the plot above of the standard deviation per PC above. Therefore we will use 30 PCs in
the following, by explicitly setting dims = 1:30. Note that t-SNE is slower with more input dimensions (here
the PCs), so it is good to find a middle ground between capturing as much variation as possible with as few
PCs as possible. However, using the default 5 clearly does not produce optimal results for this dataset. When
using t-SNE with PCA preprocessing with your own data, always check how many PCs you need to cover the
variance, as done above. t-SNE has a few hyper-parameters that can be tuned for better visualization. There
is an excellent tutorial. We will now investigate the influence of two of these hyperparameters.

4.3.1 [OPTIONAL] t-SNE: perplexity

The main parameter is the perplexity, basically indicating how many neighbors to look at. We will run
different perplexities to see the effect. As we will see, a perplexity of 30 is the default. This value often works
well, again it might be advisable to test different values with other data. Note, higher perplexity values make
t-SNE slower to compute.
Perplexity 3
pbmc <- RunTSNE(pbmc, reduction = "pca", dims = 1:30, perplexity = 3)
p1 <- DimPlot(pbmc, reduction = "tsne", group.by = "celltype") + NoLegend() +
ggtitle("30PCs, Perplexity 3")

Perplexity 10
pbmc <- RunTSNE(pbmc, reduction = "pca", dims = 1:30, perplexity = 10)
p2 <- DimPlot(pbmc, reduction = "tsne", group.by = "celltype") + NoLegend() +
ggtitle("30PCs, Perplexity 10")

Perplexity 30
pbmc <- RunTSNE(pbmc, reduction = "pca", dims = 1:30, perplexity = 30)
p3 <- DimPlot(pbmc, reduction = "tsne", group.by = "celltype") + NoLegend() +
ggtitle("30PCs, Perplexity 30")

Perplexity 200
pbmc <- RunTSNE(pbmc, reduction = "pca", dims = 1:30, perplexity = 200)
p4 <- DimPlot(pbmc, reduction = "tsne", group.by = "celltype") + NoLegend() +
ggtitle("30PCs, Perplexity 200")

16

https://distill.pub/2016/misread-tsne/

p1 + p2 + p3 + p4

−80

−40

0

40

−40 0 40
tSNE_1

tS
N

E
_2

30PCs, Perplexity 3

−40

−20

0

20

40

−40 −20 0 20
tSNE_1

tS
N

E
_2

30PCs, Perplexity 10

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

30PCs, Perplexity 30

−10

0

10

−5.0 −2.5 0.0 2.5 5.0 7.5
tSNE_1

tS
N

E
_2

30PCs, Perplexity 200

4.3.2 [OPTIONAL] t-SNE: number of iterations

Another important parameter is the number of iterations. t-SNE gradually optimizes the embedding in
low-dimensional space. The more iterations the more there is time to optimize. We will run different numbers
of iterations to see the effect. As we will see, 1000 iterations is the default. This value often works well, again
it might be advisable to test different values with other data. Especially for larger datasets you will need
more iterations. Note, more iterations make t-SNE slower to compute.
100 iterations
pbmc <- RunTSNE(pbmc, reduction = "pca", dims = 1:30, max_iter = 100)
p1 <- DimPlot(pbmc, reduction = "tsne", group.by = "celltype") + NoLegend() +
ggtitle("100 iterations")

500 iterations
pbmc <- RunTSNE(pbmc, reduction = "pca", dims = 1:30, max_iter = 500)
p2 <- DimPlot(pbmc, reduction = "tsne", group.by = "celltype") + NoLegend() +
ggtitle("500 iterations")

1000 iterations
pbmc <- RunTSNE(pbmc, reduction = "pca", dims = 1:30, max_iter = 1000)
p3 <- DimPlot(pbmc, reduction = "tsne", group.by = "celltype") + NoLegend() +
ggtitle("1000 iterations")

2000 iterations
pbmc <- RunTSNE(pbmc, reduction = "pca", dims = 1:30, max_iter = 2000)
p4 <- DimPlot(pbmc, reduction = "tsne", group.by = "celltype") + NoLegend() +
ggtitle("2000 iterations")

p1 + p2 + p3 + p4

17

−2

−1

0

1

2

−2 −1 0 1 2
tSNE_1

tS
N

E
_2

100 iterations

−20

−10

0

10

20

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

500 iterations

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

1000 iterations

−20

0

20

−20 0 20
tSNE_1

tS
N

E
_2

2000 iterations

As we see after 100 iterations the main structure becomes apparent, but there is very little detail. 500 to 2000
iterations all look very similar, with 500 still a bit more loose than 1000, indicating that the optimization
converges somewhere between 500 and 1000 iterations. In this case running 2000 would definitely not be
necessary.

4.4 UMAP
We have seen t-SNE and its main parameters. Let’s have a look at UMAP. Its main function call is very
similar to t-SNE and PCA and called RunUMAP. Again, by default it looks for the PCA in the pbmc data
object, but we have to provide it with the number of PCs (or dims) to use. Here, we use 30. As expected,
the plot looks rather similar to the t-SNE plot, with more compact clusters.
pbmc <- RunUMAP(pbmc, dims = 1:30, verbose = FALSE)

Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per session
DimPlot(pbmc, reduction = "umap", group.by = "celltype")

18

−15

−10

−5

0

5

10

−10 −5 0 5 10 15
UMAP_1

U
M

A
P

_2

B cell
CD4 T cell
CD8 T cell
Dendritic cell
Monocyte
NK cell

celltype

Just like t-SNE, UMAP has a bunch of parameters. In fact, Seurat exposes quite a few more than for t-SNE.
We will look at the most important in the following. An interactive tutorial can be found here, and here is a
comparison with the same datasets between UMAP and t-SNE.

Again, we start with varying the number of PCs. Similar to t-SNE, 5 is clearly not enough, 30 provides
decent separation and detail. Just like for t-SNE, test this parameter to match your own data in real-world
experiments.
PC_1 to PC_5
pbmc <- RunUMAP(pbmc, dims = 1:5, verbose = FALSE)
p1 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() + ggtitle("5 PCs")
PC_1 to PC_10
pbmc <- RunUMAP(pbmc, dims = 1:10, verbose = FALSE)
p2 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() + ggtitle("10 PCs")
PC_1 to PC_30
pbmc <- RunUMAP(pbmc, dims = 1:30, verbose = FALSE)
p3 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() + ggtitle("30 PCs")
PC_1 to PC_100
pbmc <- RunUMAP(pbmc, dims = 1:100, verbose = FALSE)
p4 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() + ggtitle("100 PCs")
p1 + p2 + p3 + p4

19

https://pair-code.github.io/understanding-umap/
https://jlmelville.github.io/uwot/umap-simple.html

−10

−5

0

5

10

−10 0 10
UMAP_1

U
M

A
P

_2

5 PCs

−10

−5

0

5

10

−10 0 10
UMAP_1

U
M

A
P

_2

10 PCs

−15

−10

−5

0

5

10

−10 −5 0 5 10 15
UMAP_1

U
M

A
P

_2

30 PCs

−10

0

10

−10 0 10
UMAP_1

U
M

A
P

_2

100 PCs

4.4.1 [OPTIONAL] UMAP: number of neighbours

The n.neighbors parameter sets the number of neighbors to consider for UMAP. Larger values will result in
more global structure being preserved at the loss of detailed local structure. This parameter is similar to the
perplexity in t-SNE. We try a similar range of values for comparison. The results are quite similar to t-SNE.
With low values, clearly the structures are too spread out, but quickly the embeddings become quite stable.
The default vaule for RunUMAP is 30. Similar to t-SNE this value generally gives reasonable results. Again,
it’s always a good idea to run some tests with new data to find a good value.
3 Neighbors
pbmc <- RunUMAP(pbmc, dims = 1:30, n.neighbors = 3, verbose = FALSE)
p1 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() +
ggtitle("3 Neighbors")

10 Neighbors
pbmc <- RunUMAP(pbmc, dims = 1:30, n.neighbors = 10, verbose = FALSE)
p2 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() +
ggtitle("10 Neighbors")

30 Neighbors
pbmc <- RunUMAP(pbmc, dims = 1:30, n.neighbors = 30, verbose = FALSE)
p3 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() +
ggtitle("30 Neighbors")

200 Neighbors
pbmc <- RunUMAP(pbmc, dims = 1:30, n.neighbors = 200, verbose = FALSE)
p4 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() +
ggtitle("200 Neighbors")

p1 + p2 + p3 + p4

20

−15

−10

−5

0

5

10

−10 −5 0 5 10 15
UMAP_1

U
M

A
P

_2

3 Neighbors

−5

0

5

10

−15 −10 −5 0 5 10
UMAP_1

U
M

A
P

_2

10 Neighbors

−15

−10

−5

0

5

10

−10 −5 0 5 10 15
UMAP_1

U
M

A
P

_2

30 Neighbors

−5

0

5

10

−15 −10 −5 0 5 10
UMAP_1

U
M

A
P

_2

200 Neighbors

4.4.2 [OPTIONAL] UMAP: min.dist

Another parameter is min.dist, which defines the compactness of the final embedding. Larger values ensure
embedded points are more evenly distributed, while smaller values allow the algorithm to optimise more
accurately with regard to local structure. The default value is 0.3. There is no directly comparable parameter
in t-SNE.
Min Distance 0.01
pbmc <- RunUMAP(pbmc, dims = 1:30, min.dist = 0.01, verbose = FALSE)
p1 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() +
ggtitle("Min Dist 0.01")

Min Distance 0.1
pbmc <- RunUMAP(pbmc, dims = 1:30, min.dist = 0.1, verbose = FALSE)
p2 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() +
ggtitle("Min Dist 0.1")

Min Distance 0.3
pbmc <- RunUMAP(pbmc, dims = 1:30, min.dist = 0.3, verbose = FALSE)
p3 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() +
ggtitle("Min Dist 0.3")

Min Distance 1.0
pbmc <- RunUMAP(pbmc, dims = 1:30, min.dist = 1.0, verbose = FALSE)
p4 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() +
ggtitle("Min Dist 1.0")

p1 + p2 + p3 + p4

21

−15

−10

−5

0

5

10

−15 −10 −5 0 5 10 15
UMAP_1

U
M

A
P

_2

Min Dist 0.01

−10

0

−10 0 10
UMAP_1

U
M

A
P

_2

Min Dist 0.1

−15

−10

−5

0

5

10

−10 −5 0 5 10 15
UMAP_1

U
M

A
P

_2

Min Dist 0.3

−20

−10

0

10

−10 0 10 20
UMAP_1

U
M

A
P

_2

Min Dist 1.0

4.4.3 [OPTIONAL] UMAP: number of epochs

n.epochs is comparable to the number of iterations in t-SNE. Typically, UMAP needs fewer of iterations to
converge than t-SNE, but also changes more when it is run longer. The default is 500. Again, this should be
adjusted to your data.
10 epochs
pbmc <- RunUMAP(pbmc, dims = 1:30, n.epochs = 10, verbose = FALSE)
p1 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() +
ggtitle("10 Epochs")

100 epochs
pbmc <- RunUMAP(pbmc, dims = 1:30, n.epochs = 100, verbose = FALSE)
p2 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() +
ggtitle("100 Epochs")

500 epochs
pbmc <- RunUMAP(pbmc, dims = 1:30, n.epochs = 500, verbose = FALSE)
p3 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() +
ggtitle("500 Epochs")

1000 epochs
pbmc <- RunUMAP(pbmc, dims = 1:30, n.epochs = 1000, verbose = FALSE)
p4 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() +
ggtitle("1000 Epochs")

p1 + p2 + p3 + p4

22

−8

−4

0

4

−4 0 4
UMAP_1

U
M

A
P

_2

10 Epochs

−10

−5

0

5

−5 0 5 10
UMAP_1

U
M

A
P

_2

100 Epochs

−15

−10

−5

0

5

10

−10 −5 0 5 10 15
UMAP_1

U
M

A
P

_2

500 Epochs

−10

−5

0

5

−10 −5 0 5 10
UMAP_1

U
M

A
P

_2

1000 Epochs

See this presentation of Dmitry KObak for all detailed ins and outs on similarities and differences between
t-SNE and UMAP.

4.5 Visualization
Finally, let’s have a brief look at some visualization options. We have already used color for grouping. With
label = TRUE we can add a text-label to each group and with repel = TRUE we can make sure those labels
don’t clump together. Finally, pt.size = 0.5 changes the size of the dots used in the plot.
Re-run a t-SNE so we do not rely on changes above
pbmc <- RunTSNE(pbmc, dims = 1:30)
DimPlot(pbmc, reduction = "tsne", group.by = "celltype", label = TRUE, repel = TRUE,

pt.size = 0.5) + NoLegend()

23

https://www.youtube.com/watch?v=CsUqmug7ZMc

Monocyte

B cell

CD8 T cell

CD4 T cell

NK cell

Dendritic cell

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

celltype

Another property we might want to look at in our dimensionality reduction plot is the expression of individual
genes. We can overlay gene expression as color using the FeaturePlot function. Here, we first find the top
two features correlated to the first and second PCs and combine them into a single vector which will be the
parameter for the FeaturePlot.

Finally, we call FeaturePlot with the pbmc data object, features = topFeaturesPC uses the extracted
feature vector to create one plot for each feature in the list and lastly, reduction = "pca" will create PCA
plots.

Not surprisingly, the top two features of the first PC form a smooth gradient on the PC_1 axis and the top
two features of the second PC a smooth gradient on the PC_2 axis.
find top genes for PCs 1 and 2
topFeaturesPC1 <- TopFeatures(object = pbmc[["pca"]], nfeatures = 2, dim = 1)
topFeaturesPC2 <- TopFeatures(object = pbmc[["pca"]], nfeatures = 2, dim = 2)
combine the genes into a single vector
topFeaturesPC <- c(topFeaturesPC1, topFeaturesPC2)
print(topFeaturesPC)

[1] "LYZ" "FCN1" "MS4A1" "CD79A"
feature plot with the defined genes
FeaturePlot(pbmc, features = topFeaturesPC, reduction = "pca")

24

−10

0

10

20

−30 −20 −10 0 10
PC_1

P
C

_2

0
1
2
3
4
5

LYZ

−10

0

10

20

−30 −20 −10 0 10
PC_1

P
C

_2

0

1

2

3

FCN1

−10

0

10

20

−30 −20 −10 0 10
PC_1

P
C

_2

0

1

2

3

MS4A1

−10

0

10

20

−30 −20 −10 0 10
PC_1

P
C

_2

0

1

2

3

4

CD79A

Let’s have a look at the same features on a t-SNE plot. The behavior here is quite different, with the high
expression being very localized to specific clusters in the maps.
FeaturePlot(pbmc, features = topFeaturesPC, reduction = "tsne")

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

0
1
2
3
4
5

LYZ

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

0

1

2

3

FCN1

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

0

1

2

3

MS4A1

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

0

1

2

3

4

CD79A

It is clear that the top PCs are fundamental to forming the clusters, so let’s have a look at more PCs and
pick the top gene per PC for a few more PCs.
for(i in 1:6) {

topFeaturesPC[[i]] <- TopFeatures(object = pbmc[["pca"]], nfeatures = 1, dim = i)
}
print(topFeaturesPC)

25

[1] "LYZ" "CD79A" "GZMB" "SERPINF1" "CDKN1C" "TUBB1"
FeaturePlot(pbmc, features = topFeaturesPC, reduction = "tsne")

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

0
1
2
3
4
5

LYZ

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

0

1

2

3

4

CD79A

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

0

1

2

3

GZMB

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

0.0
0.5
1.0
1.5
2.0
2.5

SERPINF1

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

0

1

2

3

CDKN1C

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

0
1
2
3
4

TUBB1

Finally, let’s create a more interactive plot. First we create a regular FeaturePlot, here with just one
gene features = "CD3D", a marker of T cells. Instead of plotting it directly we save the plot in the
interactivePlot variable.

With HoverLocator we can then embed this plot into an interactive version. The information =
FetchData(pbmc, vars = c("celltype", topFeaturesPC)) creates a set of properties that will be shown
on hover over each point. Im this case, we show the cell type from the meta information.

The result is a plot that allows us to inspect single cells in detail.
interactivePlot <- FeaturePlot(pbmc, reduction = "tsne", features = "CD3D")
HoverLocator(plot = interactivePlot,

information = FetchData(pbmc, vars = c("celltype", topFeaturesPC)))

4.6 Saving the data
Save the Seurat object with the new embeddings for future use downstream.
saveRDS(pbmc, file = "pbmc3k_emb.rds")

26

If you’re interested in more ways to visualize your data, this vignette might be useful.

5 Clustering
In this section we will look at different approaches to cluster scRNA-seq datasets in order to characterize the
different subgroups of cells. Using unsupervised clustering, we will try to identify groups of cells based on the
similarities of their transcriptomes without any prior knowledge of the labels.

5.1 Distances and hierarchical clustering of a toy example
Cluster algorithms group similar data together. What is meant by the word similar is formally defined by
the notion of a distance. We will first have a look at two commonly used distance measures in more detail.

For this purpose we will use a synthetic dataset corresponding to a mini-experiment with just four cells
(A,B,C,D) and four genes per cell given in file hcexample.txt. Download this file and save it in the same
folder data as the single-cell experiment data.

The following piece of R code reads in hcexample.txt and then plots the cell profiles:
E <- read.table("data/hcexample.txt")
matplot(E,type="l",col=1:4,lty=1:4,lwd=3,xlab="Gene",ylab="Expression",xaxt="n")
axis(1,1:4)
legend(3.3,2.8,c("A","B","C","D"),lty=1:4,col=1:4,lwd=3,y.intersp=1,cex=1.3)

0
1

2
3

4

Gene

E
xp

re
ss

io
n

1 2 3 4

A
B
C
D

Calculate the Euclidean (euc) and the Pearson sample correlation (cor.dist) distance between the cell
profiles. These are functions from the bioDist package that we loaded at the beginning of the computer lab.
Note that you have to transpose (t) the data matrix E since pairwise distances
are calculated for rows of a matrix

27

https://satijalab.org/seurat/articles/visualization_vignette.html
https://bioinformaticslaboratory.eu/wp-content/uploads/hcexample.txt

d.euc <- euc(t(E))
d.euc

A B C
B 2.000000
C 6.000000 6.324555
D 6.324555 6.000000 2.000000
d.cor <- cor.dist(t(E),abs=FALSE)
d.cor

A B C
B 2
C 0 2
D 2 0 2

As always you can obtain a detailed explanation of a function by typing ? followed by the name of the
function in the Console window, for example ?euc or ?cor.dist.

Question 5 Can you explain the resulting distance matrix when using the Pearson correlation distance?

Such a distance or dissimilarity matrix forms the basis for most clustering algorithms. In omics literature, an
agglomerative (i.e., bottum-up) hierarchical approach such as implemented in the hclust function is popular.
As explained in the lecture, hierarchical clustering tries to find a tree-like representation of the data in which
clusters have subclusters, which have subclusters, and so on. The number of clusters depends on in how much
detail one looks at the tree. Hierarchical clustering uses two types of distances:

• Distance between two individual data points (Euclidean, correlation etc.)
• Distance between two clusters of data points, also called linkage (single, average, etc.).

Question 6 Draw (just with pencil on paper) the dendrograms for both the Euclidean and the correlation
distance matrix generated above. Explain your results.

One property of most clustering algorithms is that they always produce clusters. This happens regardless of
whether there is actually any meaningful clustering structure present in the data. Let us now simulate some
unstructured data (rnorm randomly generates data from a normal distribution) and see what happens.
1000 genes
n.genes <- 1000
50 samples
n.samples <- 50
Generate labels for the cells
descr <- paste("S", rep(c("0",""),times=c(9,41)), 1:50, sep="")
Fix the random seed to make the exercise reproducible
set.seed(13)
Matrix of expression data for 1000 genes and 50 cells
dataMatrix <- matrix(rnorm(n.genes*n.samples),nrow=n.genes)

Question 7 Use hclust with Euclidean distance and average, single, and complete linkage to cluster the
samples and plot the resulting dendrograms. First have a look at ?hclust and especially the examples at the
bottom of the help page to see how to use this function. If this goes beyond your current R skills, have a look
at the answers and just run the code given there.

Question 8 Which phenomenon do you see with single linkage? How might this make interpretation difficult?

Question 9 The complete linkage dendrogram seems to show some structure in the data and you might
decide that four clusters can be discerned. Is this structure real?

28

5.2 Hierarchical clustering of scRNA-seq data
Now, we will continue with the v3.1k dataset that you have preprocessed and visualized in the previous
sections. Let’s start by loading the data again.

In one of the previous sections, we have already selected highly variable genes. This step is also to decide
which genes to use when clustering the cells. Single cell RNA-seq can profile a huge number of genes in a lot
of cells. But most of the genes are not expressed enough to provide a meaningful signal and are often driven
by technical noise. Including them could potentially add some unwanted signal that would blur the biological
variation. Moreover gene filtering can also speed up the computational time for downstream analysis.
pbmc <- readRDS('pbmc3k_emb.rds')

We start by performing hierarchical clustering with Euclidean distance and yet another linkage method,
called Ward linkage.
Get scaled counts from the Seurat object
scaled_pbmc <- pbmc@assays$RNA@scale.data
Calculate Distances (default: Euclidean distance)
distance_euclidean <- dist(t(scaled_pbmc))
Perform hierarchical clustering using Ward linkage
ward_hclust_euclidean <- hclust(distance_euclidean,method = "ward.D2")
plot(ward_hclust_euclidean, main = "dist = Eucledian, Ward linkage", labels=FALSE)

0
10

0
30

0
50

0
70

0

dist = Eucledian, Ward linkage

hclust (*, "ward.D2")
distance_euclidean

H
ei

gh
t

Now cut the dendrogram to generate 10 clusters and plot the cluster labels and the previously given celltype
labels on the t-SNE plot. For now, we just pick 10, but you can of course vary this number to see how it
influences your results.
Cutting the cluster tree to make 10 groups
cluster_hclust <- cutree(ward_hclust_euclidean,k = 10)
pbmc@meta.data$cluster_hclust <- factor(cluster_hclust)
p1 <- DimPlot(pbmc, reduction="tsne", group.by = "cluster_hclust")
p2 <- DimPlot(pbmc, reduction="tsne", group.by = "celltype")
p1+p2

29

https://en.wikipedia.org/wiki/Ward%27s_method

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

1
2
3
4
5
6
7
8
9
10

cluster_hclust

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

B cell
CD4 T cell
CD8 T cell
Dendritic cell
Monocyte
NK cell

celltype

Now let’s try a different distance measure. A commonly used distance measure is 1 - correlation.
Calculate Distances (1 - correlation)
C <- cor(scaled_pbmc)
Run clustering based on the correlations, where the distance will
be 1-correlation, e.g. higher distance with lower correlation.
distance_corr <- as.dist(1-C)

#Perform hierarchical clustering using ward linkage
ward_hclust_corr <- hclust(distance_corr,method="ward.D2")
plot(ward_hclust_corr, main = "dist = 1-corr, Ward linkage", labels=FALSE)

0
5

10
15

dist = 1−corr, Ward linkage

hclust (*, "ward.D2")
distance_corr

H
ei

gh
t

Again, let’s cut the dendrogram to generate 10 clusters and plot the cluster labels on the t-SNE plot.
#Cutting the cluster tree to make 10 groups
cluster_hclust <- cutree(ward_hclust_corr,k = 10)
pbmc@meta.data$cluster_hclust <- factor(cluster_hclust)
p1 <- DimPlot(pbmc, reduction="tsne", group.by = "cluster_hclust")
p2 <- DimPlot(pbmc, reduction="tsne", group.by = "celltype")
p1+p2

30

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

1
2
3
4
5
6
7
8
9
10

cluster_hclust

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

B cell
CD4 T cell
CD8 T cell
Dendritic cell
Monocyte
NK cell

celltype

Instead of changing the distance metric, we can change the linkage method. Instead of using Ward’s method,
let’s use complete linkage.
#Perform hierarchical clustering using complete linkage and Euclidean distance
comp_hclust_eucledian <- hclust(distance_euclidean,method = "complete")
plot(comp_hclust_eucledian, main = "dist = euclidean, complete linkage", labels=FALSE)

20
40

60
80

10
0

12
0

14
0

dist = euclidean, complete linkage

hclust (*, "complete")
distance_euclidean

H
ei

gh
t

Once more, let’s cut the dendrogram to generate 10 clusters and plot the cluster labels on the t-SNE plot.
#Cutting the cluster tree to make 10 groups
cluster_hclust <- cutree(comp_hclust_eucledian,k = 10)
pbmc@meta.data$cluster_hclust <- factor(cluster_hclust)
p1 <- DimPlot(pbmc, reduction="tsne", group.by = "cluster_hclust")
p2 <- DimPlot(pbmc, reduction="tsne", group.by = "celltype")
p1+p2

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

1
2
3
4
5
6
7
8
9
10

cluster_hclust

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

B cell
CD4 T cell
CD8 T cell
Dendritic cell
Monocyte
NK cell

celltype

As you can see, these linkage methods and distances cluster the data differently. If you want, there are even
more distance measures and linkage methods to play around with.

31

5.2.1 [OPTIONAL] UMAP: influence of distance measure

This was not mentioned beforem but also RunUMAP allows to set the distance metric used in high-dimensional
space. While in principle this is also possible with t-SNE, RunTSNE, and most other implementations, do not
provide this option. The four possibilities, euclidean, cosine, manhattan, and hamming distance are shown
below. Cosine distance is the default (RunTSNE uses Euclidean distances).

There is not necessarily a clear winner. Hamming distances perform worse but they are usually used for
different data, such as text as they ignore the numerical difference for a given comparison. Going with the
default cosine is definitely not a bad choice in most applications.
Euclidean distance
pbmc <- RunUMAP(pbmc, dims = 1:30, metric = "euclidean", verbose = FALSE)
p1 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() +
ggtitle("Euclidean")

Cosine distance
pbmc <- RunUMAP(pbmc, dims = 1:30, metric = "cosine", verbose = FALSE)
p2 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() +
ggtitle("Cosine")

Manhattan distance
pbmc <- RunUMAP(pbmc, dims = 1:30, metric = "manhattan", verbose = FALSE)
p3 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() +
ggtitle("Manhattan")

Hamming distance
pbmc <- RunUMAP(pbmc, dims = 1:30, metric = "hamming", verbose = FALSE)
p4 <- DimPlot(pbmc, reduction = "umap", group.by = "celltype") + NoLegend() +
ggtitle("Hamming")

p1 + p2 + p3 + p4

−10

−5

0

5

10

−10 −5 0 5 10
UMAP_1

U
M

A
P

_2

Euclidean

−15

−10

−5

0

5

10

−10 −5 0 5 10 15
UMAP_1

U
M

A
P

_2

Cosine

−15

−10

−5

0

5

10

−5 0 5 10 15
UMAP_1

U
M

A
P

_2

Manhattan

−5.0

−2.5

0.0

2.5

5.0

−4 −2 0 2 4
UMAP_1

U
M

A
P

_2

Hamming

5.3 Graph based clustering
The clustering algorithm of Seurat itself is based on so-called graph based clustering (not explained in the
lecture). The output of the clustering, will be saved automatically in the metadata as ‘seurat_clusters’. This
method includes a resolution parameter related to the number of clusters. You can play around with this

32

parameters to see how it influences the results.
pbmc <- FindNeighbors(pbmc, dims = 1:10, verbose = FALSE)
pbmc <- FindClusters(pbmc, resolution = 0.25, verbose = FALSE)
p1 <- DimPlot(pbmc, reduction="tsne", group.by = "seurat_clusters")
p2 <- DimPlot(pbmc, reduction="tsne", group.by = "celltype")
p1+p2

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

0
1
2
3
4
5

seurat_clusters

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

B cell
CD4 T cell
CD8 T cell
Dendritic cell
Monocyte
NK cell

celltype

5.4 Visualizing marker genes and annotating the cells
Once, you are satisfied with the clusters, these can be annotated by visualizing known marker genes or by
looking at differentially expressed genes. Here, we just focus on known marker genes. A commonly used
approach is that the data is annotated in a hierarchical fashion. First the data is annotated at a low resolution
(e.g. only 2-3 cell types) and afterwards each cluster is subsetted from the data, clustered and annotated
again. This process can continue until you’re satisfied with the resolution.
pbmc <- FindNeighbors(pbmc, dims = 1:10, verbose = FALSE)
pbmc <- FindClusters(pbmc, resolution = 0.01, verbose = FALSE)
p1 <- DimPlot(pbmc, reduction="tsne", group.by = "seurat_clusters")
p2 <- DimPlot(pbmc, reduction="tsne", group.by = "celltype")
p1+p2

33

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2 0

1
2

seurat_clusters

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

B cell
CD4 T cell
CD8 T cell
Dendritic cell
Monocyte
NK cell

celltype

So now that we have clustered the data at a low resolution, we can visualize some marker genes: CD19 (B
cells), CD3D (T cells), CD14 (Monocytes), NKG7 (NK cells).
FeaturePlot(pbmc, reduction='tsne', features=c('CD19', 'CD3D', 'CD14', 'NKG7'))

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

0

1

2

CD19

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

0

1

2

3

CD3D

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

0

1

2

3

CD14

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

0
1
2
3
4

NKG7

For a new, more complex dataset, you will probably need to visualize more genes before you can label a
cluster. For now, we will assume that cluster 0 are NK and T cells, cluster 1 are Monocytes and cluster 2 are
B cells. In the code below, you will assign these labels to your cluster.
new.cluster.ids <- c("NK and T cells", "Monocytes", "B cells")
names(new.cluster.ids) <- levels(pbmc)
pbmc <- RenameIdents(pbmc, new.cluster.ids)
DimPlot(pbmc, reduction = "tsne", label = TRUE) + NoLegend()

34

Monocytes

B cells
NK and T cells

−30

−20

−10

0

10

20

30

−20 −10 0 10 20
tSNE_1

tS
N

E
_2

If you want to cluster the cells at a higher resolution, you could for instance subset the data now and repeat
these steps. For now, we will just save the object.
saveRDS(pbmc, file = "pbmc3k_clust.rds")

5.5 Annotation using a reference atlas
For some well studied tissues, there exists already a reference atlas. Cell type labels from this reference atlas
can then be easily propagated to your own new dataset. As discussed in the lecture, clustering can be quite
subjective and time-consuming. With these automatic approaches, you can overcome these issues.

An example of an automatic method is Azimuth. When using Azimuth for small datasets, it is easiest to use
the web interface. Here, you can choose which reference atlas you want to use, upload your own dataset,
choose the normalization procedure, and transfer the labels. You can try this yourself with the v3.1k PBMC
dataset using the PBMC reference. The easiest way to annotate thee v3.1k dataset, is to upload the file
pbmc3k_clust.rds that we saved at the end of the previous subsection. Then accept the default QC filters
and click “Map cells to reference”. Next click on “Download Results” and download the “Predicted cell types
and scores (TSV)”. Put the file azimuth_pred.tsv in the same folder data as the single-cell experiment data.
Then run the code below to generate an alluvial plot, comparing the cell types predicted using Azimuth and
the ones used throughout the computer lab.
labels <- read.delim("data/celltype_labels.tsv", stringsAsFactors = FALSE)
labels$cell <- paste0("v3.1k_", labels$cell)
labels.azimuth <- read.delim("data/azimuth_pred.tsv", stringsAsFactors = FALSE)
annotation <- merge(labels, labels.azimuth)[,c("celltype", "predicted.celltype.l2")]
Column 'Freq' to store the total count of all combinations
annotation$Freq <- 1
annotation2D <- aggregate(Freq ~ ., data = annotation, sum)

cols <- rev(rainbow(nrow(annotation2D), start = 0.1, end = 0.9))

35

https://azimuth.hubmapconsortium.org/
http://app.azimuth.hubmapconsortium.org/app/human-pbmc

alluvial(
select(annotation2D, celltype, predicted.celltype.l2),
freq = annotation2D$Freq,
col = cols,
alpha = 0.8,
gap.width = 0.5,
cw = 0.2,
blocks = FALSE,
axis_labels = colnames(annotation2D)[1:2],
cex = 1.5,
cex.axis = 1.5)

B cell

CD4 T cell

CD8 T cell

Dendritic cell

Monocyte

NK cell

B intermediate
B memory

B naive

CD14 Mono

CD16 Mono
CD4 Naive

CD4 TCM

CD4 TEM
CD8 Naive
CD8 TCM
CD8 TEM

cDC1
cDC2
dnT
gdT
ILC

MAIT

NK
NK_CD56bright

pDC
Plasmablast

Platelet
Treg

celltype predicted.celltype.l2

Not bad at all!

6 Acknowledgements
Thanks to the developers of the MGC/BioSB single-cell analysis course for making their teaching material
publicly available. This computer lab is largely a mash up of some of the practicals of the MGC/BioSB
course. I also thank the authors of Current best practices in single-cell RNA-seq analysis: a tutorial from
which I quoted several sentences (and for having written a very good review article of course).

36

https://github.com/LeidenCBC/MGC-BioSB-SingleCellAnalysis2021/
https://www.embopress.org/doi/full/10.15252/msb.20188746

	Preliminaries
	Setting up R
	Datasets
	Downloading and importing the data and creating a Seurat object

	Quality control (QC)
	Calculate mitochondrial proportion
	Calculate ribosomal proportion
	QC plots
	Filtering
	Mitochondrial filtering
	Gene detection filtering

	Plot QC statistics again

	Normalization and feature selection
	Normalization: Log
	Feature selection
	Saving the data

	Dimensionality reduction
	Data loading and preprocessing
	Principal component analysis
	t-SNE
	[OPTIONAL] t-SNE: perplexity
	[OPTIONAL] t-SNE: number of iterations

	UMAP
	[OPTIONAL] UMAP: number of neighbours
	[OPTIONAL] UMAP: min.dist
	[OPTIONAL] UMAP: number of epochs

	Visualization
	Saving the data

	Clustering
	Distances and hierarchical clustering of a toy example
	Hierarchical clustering of scRNA-seq data
	[OPTIONAL] UMAP: influence of distance measure

	Graph based clustering
	Visualizing marker genes and annotating the cells
	Annotation using a reference atlas

	Acknowledgements

