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Abstract. R is more than a statistical program; it is a programming language for
statistical computing. Due to its flexibility and the availability of a large variety
of user contributed functionality, it is quickly gaining popularity for performing
analyses that go beyond the standard ones. However, for a beginner mastering
R can be rather difficult. There is hardly any graphical user interface and the
structure of R is quite different from other statistical programs. This course helps
you to become familiar with the basics of R. We explain the basic structure and
the most important functionalities. There is plenty of time for practicing R with
simple computer exercises. And since it is impossible to learn more than only
a small fraction during this course, we explain where extra information can be
found that may answer specific questions. After the course you will be able to
write short programs in R for basic data analyses and for creating publication-
quality figures.
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Part I

Day 1 and 2
1 Introduction

Course setup

• Course aim: become familiar with the basics of R
• Four days, one morning session per day: 9:00-12:00
• Mix of interactive lectures and computer exercises
• Course website: https://bioinformaticslaboratory.eu/gs-computing-in-r/
• Comments and suggestions for improvement are most welcome

.3

Before we start with explaining the basic structure of R, we briefly describe the
general use and characteristics of statistical programs. We divide the stages in a
statistical analysis into five steps. We ignore the earlier steps, that is, the design
of a study and the collection of data, which are generally done without the use
of a statistical program. So we suppose that we already have a data set that we
want to analyze.

Stages in statistical analysis

1. Importing data into statistical program
2. Inspection of data
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• finding errors, cleaning

• recoding and transforming

• description and summarizing of the data

using spreadsheets, tables and graphics
3. Analysis: estimation, uncertainty (confidence intervals, p-value), predic-

tive value
4. Model validation

Check the assumptions of the model
5. Reporting of results

summary, tables, graphics
export

.4

In this course, we concentrate on steps 2. and 5. Steps 3. and 4. are only touched
upon. They are explained in more detail in Doctoral School courses like “Ad-
vanced Topics in Biostatistics” and “Bioinformatics”.

To some extent, all major statistical programs share the following character-
istics.

Characteristics of a statistical program

1. Two ways to perform the task

• Via the menu, graphical user interface (GUI)

• Writing code in a script (syntax) window

Actions performed via the menu can also be saved in a script
2. At least five windows

• Script (syntax). A good editor is really helpful

• Results (output). Often in structured markup language (html, Word,
ODF (open document format), LATEX)

• Graphics. Can be saved in various formats (pdf, wmf, png)
Sometimes combined with results window (SPSS)

• Spreadsheet. To see the complete data set.

• Help. In program or via web browser.
.5

Statistical programs differ a lot with respect to the amount of actions that can
be performed via the GUI. On one extreme is SPSS, which is generally consid-
ered a user-friendly program since most types of analyses can be performed via
the GUI. On the other extreme is R, which has a very rudimentary GUI. As a
consequence, it not easy to master in the beginning. However, everyone who is
doing statistical analyses on a regular basis, will experience that use and reuse
of code is much more flexible and efficient. In general, the actions that can be
performed via the menu are more restricted than what can be done by writing
code. And using code makes your research reproducible (see page 30). With
respect to performing tasks via written code, R is unsurpassed in extensiveness
and flexibility.

However, writing code in R differs considerably from other statistical pro-
grams. Yet, there are good reasons why it has its specific structure, and in the
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end R turns out to be an extremely efficient program for performing statistical
analyses.

R is called “a language and environment for statistical computing and graph-
ics”. If you are interested to know why, you can read http://www.r-project.

org/about.html.

R: What is it?

• On http://www.r-project.org/about.html: “a language and envi-
ronment for statistical computing and graphics”

• Free statistical package: no money and open source
• Runs on all major operating systems
• Standard distribution with basic statistical procedures
• Extensions via packages

– Recommended; come installed together with R

– Thousands more; can be installed from the R website

• Hard to learn(?)
• Very powerful language; has become very popular over the past 10-15

years
.6

Characteristics of a statistical program: R

1. Two ways to perform the task

• Via the menu (GUI)

– Standard R: very few options
– GUI: Rcmdr, jamovi and others (see links at the end of the hand-

outs).

• Via scripts. Saved in file with “.R” extension

2. Windows in R

• Standard R: opens with “Console”
Can be used for simple calculations; input and output in same win-
dow
Script window can be opened; results still in Console

• RStudio: Many windows (Console, Environment, History, . . . )
Can be customized

.7

R should already be installed on your computer or in CDW/VIEW/OneView.
Start the program, via the Starten - Alle programma’s - R - R 4.3.3 menu1.
One window inside the main R window is opened, which is called the R Console
window. In this course, we describe the basic structure of R and we hope to show
you some examples of its efficiency. In the appendices, we give instructions on
how to install the program and RStudio. We highly recommend to follow the
suggestions in the appendix and to have a look at several of the subpages of the
R web site.

1or any other recent version installed on your computer
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2 Basics

R as a pocket calculator

• First of all, R can be used as a pocket calculator
• Many mathematical operations are pre-defined in R

> 2+7

[1] 9

> sqrt(2)

[1] 1.414214

> cos(pi)

[1] -1

> log10(10^3)

[1] 3

.8

A simple R session

• Now we are ready to type some R code
> x <- 2

> x

[1] 2

• The left arrow <- denotes an assignment statement. This stores a value
in object x, that can then be used later on.

• Remember: without assignment, it’s lost
> x^2

[1] 4

> x

[1] 2

.9

Interacting with the R Console

• Use up/down keys to go back/forth on the command history.

y < - x

Can easily be corrected using the up key:

y <- x

• Use CTRL+A or HOME to go to the start of a line
• Use CTRL+E or END to go to the end of a line
• Use TAB to complete pre-defined words and filenames
• If for some reason R gets stuck try ESC (Windows) or CTRL+C (Mac,

Linux)
.10

5



Help (I)
If you want to know more about an operator or function just use help (or ?)

> help(sqrt)

MathFun package:base

Description:

sqrt(x) computes the (principal) square root of x.

Usage:

sqrt(x)
.11

Functions

• help is another example of a function
• The basic R distribution consists of a large collection of functions
• Functions generate some output given some input
• The inputs are specified via arguments of the function between parentheses
( ):
name_of_function(argument_1)

• help(sqrt): sqrt is argument of function help

• The output of a function can be a value written to the Console or assigned
to an object, a figure, a help page, ... .12

Packages

• Functions in R are in general part of a package, such as the base package
for sqrt

• Only the standard packages are loaded when you start R: base, graphics,
stats, utils . . .

• Other packages are loaded by the library command
• library() shows the packages installed on your computer
• help(package=stats) gives help on all functions defined in stats
• Running help.start() launches a web browser that allows all (installed)

help pages to be browsed with hyperlinks .13

Help (II)

> help(mean)

Description: Generic function for the (trimmed) arithmetic mean.

Usage: mean(x, ...)

## Default S3 method:

mean(x, trim = 0, na.rm = FALSE, ...)

Arguments

x: An R object. Currently there are methods for numeric/logical vec-

tors and date, date-time and time interval objects.

Complex vectors are allowed for trim = 0, only ...

Value

If trim is zero (the default), the arithmetic mean of the values in x is com-

puted, as a numeric or complex vector ...
.14
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Help (III)
Outline of a help page is always the same:

• Description: what does the function do
• Usage: what arguments does the function expect
• Arguments: description of the individual arguments
• Value: what is the result of a function call
• Details, references, See Also
• Example: example(mean)

.15

Everything is an object in R. The most important objects in R are the data,
functions to perform analyses and the output of analyses. During this course, we
describe these three object types in more detail. We start with the description of
the different data structures and how data sets can be read into R.

3 Syntax: data

3.1 Data structures

Vectors (I)
A vector is one of the basic data structures in R:

> x <- c(10, 9, 8, 7, 6, 5, 4, 3, 2, 1)

> x

[1] 10 9 8 7 6 5 4 3 2 1

These commands also give a vector of the numbers 10 to 1:

> x <- seq(from = 10, to = 1, by = -1)

> x <- seq(10, 1)

> x <- 10:1

c (short for concatenate) and seq are functions as well .16

Vectors (II)

• Vectors can be indexed using square brackets [ ]:

> x[5] + x[10]

[1] 7

• Negative indices exclude elements from a vector:

> c(-5, -10)

[1] -5 -10

> x[c(-5, -10)]

[1] 10 9 8 7 5 4 3 2

• Indices can be used to replace an element of a vector

> x[4] <- 12

> x

[1] 10 9 8 12 6 5 4 3 2 1

.17
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Vectors (III)

• Functions can be applied to vectors:

> mean(x)

[1] 6

• Many calculations are vectorized:

> x + 1

[1] 11 10 9 13 7 6 5 4 3 2

> 2*x

[1] 20 18 16 24 12 10 8 6 4 2

.18

Matrices (I)

• From one to two dimensions:

> help(matrix)

matrix package:base

...

Usage:

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,

dimnames = NULL)

• Note: arguments to a function can be supplied by name or by position
.19

Matrices (II)

• Matrices store data in a table-like structure, with rows and columns:

> A <- matrix(data = 1:10, nrow = 2, ncol = 5)

> A <- matrix(1:10, 2, 5)

> A

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

• Indexing is simple (elements):

> A[2, 3]

[1] 6

• Indices can be used to replace an element of a matrix

A[2,3] <- 12

.20
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Matrices (III)

• Selecting entire row(s)

> A[1, ] # Same as A[1,1:5]

[1] 1 3 5 7 9

• Selecting entire column(s)

> A[, c(1, 5)] # Same as A[1:2, c(1,5)]

[,1] [,2]

[1,] 1 9

[2,] 2 10

• Functions can be applied to matrices:

> dim(A[, c(1, 5)])

[1] 2 2

• The generalization to any number of dimensions is an array
.21

Objects (I)

• Scalars, vectors, matrices are examples of objects. You can get an overview
of all objects you created until now via ls (short for list)

> ls()

[1] "A" "x"

• Many R functions are defined on any type of data. Examples are:

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 3.25 5.50 6.00 8.75 12.00

• Try summary(A)
.22

Object names

• An object can have almost any name you choose: patients, Data,

abc, sorted.results_file

• No space
• No special characters such as @,$,+ etc.
• _ and . are allowed
• Numbers allowed but not as first character
• Avoid names that are functions in R: sort, c, mean, t, data, q

• Some names are not allowed (reserved for programming constructs): for,
if, while . . .

• Names are case-sensitive: Data is not the same as data
.23
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Modes

• R has several atomic modes, the most important ones are:

– numeric:

> c(1, 2, 3, 4)

– logical: Boolean values: TRUE, FALSE

> -2 < 2

[1] TRUE

– character:

> letters[1:3]

[1] "a" "b" "c"

– You can change the mode of an object

> as.character(x)

[1] "10" "9" "8" "12" "6" "5" "4" "3" "2"

[10] "1"

• Modes can be mixed in lists, we’ll come back to that later
.24

Modes: logical (I)

• Booleans (TRUE, FALSE) can also be used as an index:

> x

[1] 10 9 8 12 6 5 4 3 2 1

> x[c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,

FALSE, TRUE, FALSE)]

[1] 10 8 6 4 2

• Making Booleans by comparing numbers:
Less/greater: <, >, <=, >=
Exact equality: ==
Not equal to: !=

> x[x>5]

[1] 10 9 8 12 6

• %in%: to test which values are part of a set of specified values
• Booleans are converted to integers if a numeric value is required: TRUE

equals 1, FALSE equals 0
.25
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Modes: logical (II)
You can calculate with Booleans. Main operators are:
• &: AND - all must be true
• |: OR - at least one must be true
• !: NOT - negation

> TRUE & FALSE

[1] FALSE

> TRUE | FALSE

[1] TRUE

> x>5 & x<8

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

[9] FALSE FALSE
.26

Naming (I)

• A useful concept in R is access by names:
> m <- c(1,2,3,4)

> names(m) <- c("gene1","gene2","gene3","gene4")

> m

gene1 gene2 gene3 gene4

1 2 3 4

• We can also give names to rows and columns of matrix A:
> rownames(A) <- c("gene1", "gene2")

> colnames(A) <- c("sample1", "sample2", "sample3",

"sample4", "sample5")
.27

Naming (II)

• We can now index by name instead of by number or Boolean:
> A

sample1 sample2 sample3 sample4 sample5

gene1 1 3 5 7 9

gene2 2 4 12 8 10

> A["gene1", ]

sample1 sample2 sample3 sample4 sample5

1 3 5 7 9

• Indexing by name rather than by number makes code more readable: Data["BRCA1",]
instead of Data[4137,]

.28

RStudio

• Open RStudio via Starten - Alle programma’s - R - RStudio
• A so-called integrated development environment (IDE)
• Editor, Console, Environment, History, Plots, etc in one environment
• Download the script file CourseMain.R from https://bioinformaticslaboratory.

eu/gs-computing-in-r/ to execute the R code used during the lecture
.29
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Lists (I)

• Something is needed for mixing different modes, for example character
and numeric:

> c("gene1", 5)

[1] "gene1" "5"

• This can be done by lists:

> list(gene = "gene1", number = 5)

$gene

[1] "gene1"

$number

[1] 5

• gene and number are called components
.30

Lists (II)

• Lists can be indexed in various ways:

– As vectors, with square brackets. This returns a list:

> x <- list(gene = "gene1", number = 5)

> x[1]

$gene

[1] "gene1"

– With double square brackets. This extracts a component:

> x[[1]]

[1] "gene1"

– Or equivalently, by name using the $ operator (if the list is named):

> x$gene

[1] "gene1"
.31

Data frames (I)

• A special kind of list is a matrix with mixed modes, e.g., rows correspond
to individuals and columns to variables of different modes.

• All elements within a column should be of the same mode
• In R, this is dealt with by a data.frame
• External data (of the tab-delimited type, for example) imported via read.table

is of class data.frame:

read.table package:base

Description:

Reads a file in table format and creates a data frame

from it, with cases corresponding to lines and

variables to fields in the file.

.32
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Constructing a data frame

> pclass <- c("1st","2nd","1st")

> survived <- c(1,1,0)

> name <- c("Elisabeth Walton","Hudson Trevor","Helen Loraine")

> age <- c(29.0,0.9167,2.0)

> titanic <- data.frame(pclass,survived,name,age)

> titanic

pclass survived name age

1 1st 1 Elisabeth Walton 29.0000

2 2nd 1 Hudson Trevor 0.9167

3 1st 0 Helen Loraine 2.0000

.33

Data frames (II)

• Data frames can be indexed like a matrix

> titanic[c(2,3),c("name","age")]

name age

2 Hudson Trevor 0.9167

3 Helen Loraine 2.0000

• Columns of a data frame can be indexed like a list, with $ and [[ ]]

titanic$age # titanic[["age"]] gives the same result

[1] 29.0000 0.9167 2.0000

• $ and [[ ]] do not work for rows, use subset instead (see later)
.34

Data frames (III)
For large data frames, several useful functions exist to get a more compact

overview

• dim gives the number of rows and columns
• head shows the first six rows of a data frame

> dim(titanic3)

[1] 1309 17

> head(titanic3[,1:4])

pclass survived name sex

1 1st 1 Allen, Miss. Elisabeth Walton female

2 1st 1 Allison, Master. Hudson Trevor male

3 1st 0 Allison, Miss. Helen Loraine female

4 1st 0 Allison, Mr. Hudson Joshua Crei male

5 1st 0 Allison, Mrs. Hudson J C (Bessi female

6 1st 1 Anderson, Mr. Harry male

.35
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Data frames (IV)

• tail: similar to head but shows the last 6 rows
• str: compact display of the internal structure of an R object

> str(titanic3[,1:4])

'data.frame': 1309 obs. of 4 variables:

$ pclass : Factor w/ 3 levels "1st","2nd","3rd": 1 1 1 1 1 1 1 1 1 1 ...

$ survived: num 1 1 0 0 0 1 1 0 1 0 ...

$ name : chr "Allen, Miss. Elisabeth Walton" "Allison, Master. Hudson Trevor" "Al-

lison, Miss. Helen Loraine" "Allison, Mr. Hudson Joshua Crei" ...

$ sex : Factor w/ 2 levels "female","male": 1 2 1 2 1 2 1 2 1 2 ...

• summary

• View: opens a spreadsheet-style data viewer. In RStudio click on the name
of an object in the Environment tab.

• fix: opens a spreadsheet-style data editor
.36

Recapitulation: objects
You have seen the most important data objects in R:
• vectors
• matrices are a two-dimensional extension of vectors
• lists are a general form of vectors in which the various elements need not

be of the same mode
• data frames are matrix-like structures, in which the columns can be of

different modes
• Indexing of these objects can be done by number, by name, and using

Booleans. .37

The return of the help file

> ?mean

Description: Generic function for the (trimmed) arithmetic mean.

Usage: mean(x, ...)

## Default S3 method:

mean(x, trim = 0, na.rm = FALSE, ...)

Arguments

x: An R object. Currently there are methods for numeric/logical vec-

tors and date, date-time and time interval objects. Complex vectors are al-

lowed for trim = 0, only.

Value

If trim is zero (the default), the arithmetic mean of the values in x is com-

puted, as a numeric or complex vector ...
.38

3.2 Data import and export, external formats

The first thing to do is to import a data set into the statistical program. In plain R
and in RStudio, this is all done via commands.
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Data import and export: text format

• Data frames in ASCII text format (of the tab-delimited type, for example)
can be imported via read.table:

• Many arguments (see help(read.table))

read.table(file, header = FALSE, sep = "", quote = "\"'",

dec = ".",row.names, col.names, as.is = !stringsAsFactors,

na.strings = "NA", colClasses = NA, nrows = -1,

skip = 0, check.names = TRUE, fill = !blank.lines.skip,

...)

• read.csv and read.delim are identical to read.table apart from other
defaults: they are intended for comma-separated and tab-delimited files,
respectively.

• Export to ASCII file: write.table
.39

Data import of ASCII text format: common problems

• Common problems when reading in tabular data are (especially when you
use “Save as - tab-delimited file" from Excel):

– Additional tabs: between columns or at the end of a row

– Extra carriage returns at the end of the file

– Unusual characters such as the # symbol (see option comment.char)
and " quotes (see option quote)

– Presence of blank fields

– Regional settings problems: decimal separator

– Invisible spaces

• Use dim, head etc to compare the imported data with the original data file
• Be careful when using Excel as an intermediate in manipulating files:
https://www.bbc.com/news/technology-54423988

.40

We use a data set that gives the survival status of passengers on the Titanic.

Basic data import/export from other formats

• Data formats: sav (SPSS), xls, xlsx (Excel), mdb (Access), dta (STATA),
txt, csv

• sav, xls, dta, txt, csv: Imported via a function “read.”. E.g. a STATA file
titanic3.dta can be imported via the commands

> library(foreign)

> titanic3 <- read.dta("Exercises/titanic3.dta")

• xlsx files: packages openxlsx and readxl (also xls files)
• SPSS, Stata, and SAS files: package haven
• In RStudio via the menu Import Dataset. See https://support.posit.
co/hc/en-us/articles/218611977-Importing-Data-with-RStudio

• Export to other formats via a function “write.” : write.dta, write.foreign
• See R Data Import/Export Manual under Help or Help - R Help (RStu-

dio)
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• See http://r4stats.com/examples/data-import/
.41

As an example, we show three more ways to import the Titanic data set. The
first one is directly from a web site. Although the extension suggests it is an
SPSS file, it is in fact a binary R file2. With the ls() or objects() function, it
can be seen that indeed the file has been imported.

> con <- url("https://hbiostat.org/data/repo/titanic.sav")

> load(con)

> close(con)

> rm(con)

We could have done the same in one call, but then the internet connection is
not formally closed and this may generate a warning message later during your
analyses.

> load(url("https://hbiostat.org/data/repo/titanic.sav"))

Another option is to import the data set from an Excel file, which can be
downloaded from the web site https://hbiostat.org/data/. If this data set
has been downloaded into a subfolder “Exercises” of our working directory, we
can do:

> library(readxl)

> titanic3 <- read_excel("Exercises/titanic3.xls")

4 Functions; selections; special data types

4.1 Functions

R basically consists of a large collection of functions, and everything that you do
in R boils down to the evaluation of a function. A function contains the code to
perform some procedure, such as “perform a Student t-test”, “take a logarithm”
or “make a scatterplot”. Details of the procedure (what are the data, do we want
to perform a paired or unpaired t-test) are specified via arguments. Functions
generally consist of required arguments and optional arguments. As an example
we look at the the logarithmic function, which has two arguments, x and base.

log(x, base = exp(1))

The first argument provides the number of which the logarithm needs to be taken.
It always needs to be specified; it is a required argument. The second argument
gives the basis of the logarithm. It is optional; as default the natural logarithm is
taken. If you want to take the 10-log of 1000, you use log(1000, base=10).

You can leave out the name of the arguments (here x and base) if there is
no ambiguity: log(1000, 10) gives the same answer. If we change the or-
der, we need to make this clear: log(base=10, 1000) gives the same answer.
However, log(10, 1000) would give a different answer: the 1000-log of 10.
Arguments can be abbreviated if there is no risk of ambiguity.

2File types used by a specific program have standard extensions. However, there is no restric-
tion on changing the extension. Here, since it is a binary R file (explained in Section 6), a better
extension would have been the default .RData
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Functions: basic format

• All actions are performed via functions

– “Basic” functions: sqrt, mean, help, library

– Functions for analysis: t.test, lm, plot

• Input: required and optional arguments; within parentheses (sqrt(2),
help(seq)), separated by comma

– required: need to be supplied

– optional: have default values

Beware of sequence of arguments; required ones come first
e.g. log(x, base = exp(1)), x required, base optional. Argument names
can be abbreviated if no risk of ambiguity

• Special “argument” . . . : anything that makes sense, e.g. in c and paste

function
• Output: result of calculations (typically assigned to R object), graphics,

help window, . . .
• You can use functions within other functions, e.g. mean(c(3,6,8))

.42

A function is evaluated by giving its name, followed by the arguments within
parentheses. The code of the function can be obtained by only giving the name
of the function. Most of the functions consist themselves of a collection of other
functions, grouped together via curly brackets { }. Not only functions can be
grouped using curly brackets. Any collection of lines that is placed within curly
brackets is seen as a compound expression.

Functions: the inside

• Function code can be seen by leaving out the parentheses ( )

• General structure: function(args) SOME R CODE

with SOME R CODE a collection of other functions as compound expression
• Compound expressions are placed within “{ ” and “ }”:

> z <- {

x <- 2

y <- x + 2

}

> z

[1] 4

• A compound expression returns the last value
.43

One function that may be useful when writing a paper that used R for the anal-
yses is the function citation(), which gives information on how to cite R in
publications.

Functions and packages

• You can write your own functions:
> good.morning <- function(work){

if(work==TRUE) cat("wake up") else

cat("you can stay in bed")

}
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Note: here the function is saved in the object good.morning
• Can make it into a package, i.e. a collection of functions (and data):

survival, ggplot2, Rcmdr
sudoku, scuba, engsoccerdata
See http://cran.r-project.org/web/packages/

• R Reference Card 2.0 for overview of most important functions
.44

A summary of the most frequently used functions can be found in the reference
card http://cran.r-project.org/doc/contrib/Baggott-refcard-v2.pdf.
A full reference manual with all R functions in the basic R distribution can be ob-
tained from http://cran.r-project.org/doc/manuals/fullrefman.pdf.

4.2 Selections

Most statistical analyses involve making selections, by row and/or by column.
We select columns if we choose variables that are to be analysed or summarized.
We select rows if we restrict analyses to subgroups, e.g. performing an analysis
only for males.

Selection of rows and columns

• Index: [ ] (vector) or [row, col] (data frame)

– By character: titanic3[,"sex"],
titanic3[,c("age","sex")],
islands["Moluccas"]

– By number: titanic3[,4], titanic3[-1,]

– By logical: titanic3[titanic3[,"sex"] != "male",]

• Columns in data frame can also be selected via $, e.g. titanic3$sex
• We can assign values to selections or new columns

> titanic3[3,"age"] <- 23.4

> my.data$bmi <- my.data$weight/(my.data$height)^2
.45

The functions subset and with can be used for selecting rows and columns
from a data frame. Although not strictly necessary, using them often saves some
typing and makes the code more readable. As an alternative, many functions
allow for row selection via the subset argument. Column selection can be done
within a function if it uses the formula structure. Such functions have a data
argument that specifies the data frame to be used. Then, for every column that is
chosen, only the variable name itself needs to be specified. This is explained in
Section 9.

Selection of rows via functions

• Via special functions: head, tail, subset
subset(my.data, ...) with . . . a logical condition

> subset(titanic3, pclass %in% c("1st","2nd"))

(remember that %in%—“belongs to”—is a Boolean construct)
• Many functions have a subset argument

Often combined with formula structure
> xtabs(~survived, data=titanic3, subset=(sex=="male"))

.46
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Selection of columns via functions

• Via with function:

> table(titanic3$sex, titanic3$survived)

> with(titanic3, table(sex, survived))

• Many functions have a data argument, combined with formula structure

> xtabs(~sex+survived, data=titanic3)

• Via select argument of subset function
• Don’t use “$” for column selection if function has a data argument

Don’t write:

> xtabs(~titanic3$sex+titanic3$survived, data=titanic3)

.47

We explain the basic selection functions with the juul data set, which is included
in the ISwR package that comes with the book “Introductory Statistics with R”
by P. Dalgaard. First, we download and install the package. Instead of the using
the GUI, we can also use the function install.packages. Next, the package
is loaded via library(ISwR) and we have a look at the description of the juul
data set via help(juul).

> install.packages("ISwR")

> library(ISwR)

> help(juul)

> subset(juul, tanner==2 & age<10)

age menarche sex igf1 tanner testvol

192 9.50 NA 1 NA 2 2

831 9.82 1 2 NA 2 NA

835 9.89 1 2 229 2 NA

> subset(juul, tanner>=4 & age > 45)

age menarche sex igf1 tanner testvol

1325 47.37 2 2 144 5 NA

1326 48.01 2 2 154 5 NA

1329 51.07 2 2 187 5 NA

1334 58.95 2 2 218 5 NA

1335 60.99 2 2 226 5 NA

> subset(juul, tanner %in% c(1,5) & (age==0.25 | age>50))

age menarche sex igf1 tanner testvol

13 0.25 NA 1 90 1 NA

14 0.25 NA 1 141 1 NA

628 0.25 NA 2 51 1 NA

1329 51.07 2 2 187 5 NA

1334 58.95 2 2 218 5 NA

1335 60.99 2 2 226 5 NA

> xtabs(~sex+tanner, data=juul, subset=(menarche==1))

tanner

sex 1 2 3 4 5

2 221 43 32 14 2
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4.3 Some special data types

4.3.1 Missing data

Missing data

• Special value: NA (short for “not available”)
• The function is.na checks for missingness

> table(is.na(titanic3$age))

FALSE TRUE

1046 263

• Within functions, missings are often excluded by default, but not always

– quantile, mean give error if there are missings; specify argument
na.rm=TRUE

– table excludes missings, include them via argument useNA="always"
.48

We give an example using the data set juul.

> with(juul, table(sex, menarche))

1 2

1 0 0

2 369 335

> with(juul, table(sex, menarche, useNA="always"))

1 2 <NA>

1 0 0 621

2 369 335 9

<NA> 0 0 5

4.3.2 Factors

In R, there are two ways to represent a categorical variable. We can store it as
a vector of character values. But if we want to use it in statistical analyses, it
is better to store it as a factor. Factors are interpreted as categorical variables
of mode “character”. However, they have a different format, allowing for more
flexibility. Internally, values are stored as numbers 1,2, . . ., with a link between
each number and the categorical value it represents. In other statistical programs,
the same distinction exists3. Often, factors and categorical variables are treated
similarly in R.

Factors are useful if we want to define the reference category when fitting
statistical models. Mostly, effects of categorical variables are quantified with re-
spect to some reference value of the variable. The default choice (e.g. “first” or
“last” category as reference) differs per statistical program, but can be changed
within the program as well. In R, the default choice is to choose the “first” cate-
gory, i.e. the one coded as the number 1, as the reference value. By default, when
creating factors or reading a data set from another format, the “first” category is
the one that comes first in alphabetical order. However, R allows for manipu-
lation of the choice of reference value within factors. If your data preparation

3In SPSS, variables of mode character are of Type “String”, whereas factors are of Type
“Numeric”. The latter have a label defined for the different values in the Value column.
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has been done in another program, you are advised to check whether the correct
labels are allocated to each variable, and whether the coding of missing values is
still correct.

Note that the summary function for a data.frame does not summarize char-
acter vectors.

Factors: what are they?
• Categorical variable with “levels”

> DiseaseState <- factor(c("Cancer", "Cancer", "Normal"))

> DiseaseState

[1] Cancer Cancer Normal

Levels: Cancer Normal

> levels(DiseaseState)

[1] "Cancer" "Normal"

• Ordering: default is alphabetical/numeric
• Internally represented as integers 1,2, . . .

> as.numeric(DiseaseState)

[1] 1 1 2
.49

Factors: how to create?

• By default, character columns are converted into factor if data are read
from other statistical programs. Numeric codings (e.g. 999) are not con-
verted by default.

• Create or manipulate via factor function

– Required argument x: vector with values
– Optional argument levels: vector of unique values in x; sequence

determines ordering. Compare
> table(factor(DiseaseState))

> table(factor(DiseaseState, levels=c("Normal","Cancer")))

– Optional argument labels: labels given to levels.
Default: same as levels

• Useful in statistical models. Standard in R: first group is reference group.
Choice of reference group changed via relevel:

> relevel(DiseaseState, "Normal")
.50

4.3.3 Dates

Dates are basically numeric values, but represented in character format. They
are internally stored as a numeric value that gives the number of time units with
respect to some time origin. For example, in SPSS dates are stored as the num-
ber of seconds from midnight, October 14, 1582 (the beginning of the Gregorian
calendar). In R, dates are stored as the number of days since January 1st, 1970.
R is flexible with respect to the formats that are used to represent dates. The
help file for strptime and the reference card give further information. Some
further explanation and examples on the use of dates in R is given in the R
News Journal: Grothendieck G, Petzoldt T (2004). “Date and Time Classes in
R.” R News, 4(1), 29-32. at http://www.r-project.org/doc/Rnews/Rnews_
2004-1.pdf. Also note that the package lubridate helps in manipulating dates,
see http://www.jstatsoft.org/v40/i03/paper.
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Dates

• Numeric value (units since time origin) with character representation
• Origin: SPSS: October 14, 1582 (seconds); R: January 1st, 1970 (days);

STATA: January 1st, 1960 (days)
• SPSS files read into R via read.spss in foreign package need to be con-

verted
> my.data$date <- as.Date(my.data$date+ISOdate(1582,10,14) )

The haven package makes the conversion automatically
• R is very flexible in conversion between textual date representations
• as.Date: create date variable
format: change display format

.51

> as.Date("15 April 1912", "%d %b %Y")

[1] "1912-04-15"

> julian(as.Date("15 April 1912", "%d %b %Y"))

[1] -21080

attr(,"origin")

[1] "1970-01-01"

> titanic3[["dob"]] <- as.Date("15 April 1912", "%d %b %Y") + (-titanic3$age*365.25)

> as.Date("15041912", "%d%m%Y")

[1] "1912-04-15"

> as.Date("150412", "%d%m%y")

[1] "2012-04-15"

> format(as.Date("1912April15", "%Y%b%d"),"%A %B %d, %Y")

[1] "Monday April 15, 1912"

> library(lubridate)

> wday(as.Date("1912April15", "%Y%b%d"),label=TRUE)

[1] Mon

Levels: Sun < Mon < Tues < Wed < Thurs < Fri < Sat

Part II

Day 3 and 4
5 Graphics

R has versatile tools for graphics. There are typically three steps to producing
useful graphics:

1. Creating the basic plot
2. Enhancing the plot with labels, legends, colors etc.
3. Exporting the plot from R for use elsewhere

.52
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5.1 Basic graphics

Basic plot (I)
It is straightforward to make a simple plot using functions from the graphics

package (loaded by default):

> x <- (0:100)/10

> plot(x, x^3 - 13 * x^2 + 39 * x)
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Basic plot (II)
You can increase the size of the symbols on the axes and the axis labels (cex

stands for character expansion factor):

> plot(x, x^3 - 13 * x^2 + 39 * x,cex.axis=1.5,cex.lab=1.5)
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Enhancing a plot (I)

• Change the type of plot via the argument type: "p" for points (is default),
"l" for lines, etc. See ?plot for other options

• Change the titles for the axes via xlab and ylab

• Add an overall title for the plot via main

23



> plot(x,x^3-13*x^2+39*x,type="l",xlab="time (hours)",

ylab="temperature",main="Enhanced plot",cex.axis=1.5,cex.lab=1.5)
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Enhancing a plot (II)

• Change the plot symbol used from the default o via the argument pch
• Change the colour via the argument col. By name: see colors() for the

657 options. By number: see palette()

> plot(x,x^3-13*x^2+39*x,pch=18,xlab="time (hours)",

ylab="temperature",col="red",main="Enhanced plot",

cex.axis=1.5,cex.lab=1.5)
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Plot symbols
There are 25 different plot symbols, see ?points

> plot(1:25, pch=1:25,cex=2,bg="grey")

# bg: background colors for open plot symbols
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Enhancing a plot (III)
You can add points, arrows, text, lines, and a legend to an existing plot:
> x<-(0:100)/10

> plot(x,x^3-13*x^2+39*x,type="l",xlab=

"time (hours)",ylab="temperature",cex.axis=1.5,cex.lab=1.5)

> points(2,34,col="red",pch=16,cex=2)

> arrows(4,50,2.2,34.5)

> text(4.15,50,"local maximum",adj=0,col="blue",cex=1.5)

> lines(x,30-50*sin(x/2),col="blue")

> legend(x=0,y=80,legend=c("Sahara","Gobi"),col=c("black","blue"),

cex=1.5)
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Graphical parameters (I)
You can change the default value of many graphical parameters via par (see

?par). For example to reset the background of a plot to green:

> par(bg="green")

and then rerun the plot commands
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You can set a parameter back to its default value (white) by par(bg="white")
.59
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Graphical parameters (II)
Other often used options:

• lwd sets the line width
• mfrow and mfcol enable multiple plots in one figure
• las to rotate axis symbols
• mar to change the default margins of the figure

> x<-(0:100)/10

> plot(x,x^3-13*x^2+39*x,type="l",

xlab= "time (hours)",ylab="temperature",

lwd=3,las=1,cex.axis=1.5,cex.lab=1.5)
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Histograms
Use hist for plotting histograms. As always, see ?hist for the many argu-

ments of this function

> hist(titanic3$age,breaks=15,freq=FALSE,

cex.axis=1.5,cex.lab=1.5)

Histogram of titanic3$age
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Boxplot
The function boxplot can be used on a vector

> boxplot(titanic3$fare,

ylim=c(0,300),ylab="fare",

cex.axis=1.5,cex.lab=1.5)
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boxplot also has a formula interface

> boxplot(fare ~ pclass,

data=titanic3,ylim=c(0,300),ylab="fare",

cex.axis=1.5,cex.lab=1.5)
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5.2 Other types of graphics

Advanced R graphics

• Ch 12 of “An Introduction to R” gives an introduction to base graphics
• lattice: very powerful for multipanel conditioning

needs to be loaded first; xyplot is the main function
• ggplot2: based on “the grammar of graphics”
• ggvis, plotly, rCharts, Shiny: interactive visualizations
• and in many more packages (gplots, plotrix, . . . )

.63

We give an example of what can be done with functions and packages with
respect to plotting. In the Hmisc package, which has many interesting functions,
we can find a function that calculates and plots trends by subgroup. We save the
file in “pdf” format (you need to create a directory called “Graphs” first).

> library(Hmisc)

> pdf("Graphs/TitanicByPclass.pdf",width=8,height=6)

> with(titanic3, plsmo(age, survived, group=pclass, datadensity=TRUE) )

> dev.off()
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Export: two types of formats

• Vector format (pdf, eps, wmf, emf)

– digital image consisting of independent geometric objects (segments,
polygons, curves, etc.)

– can be enlarged without losing resolution

• Raster (png, jpeg, tiff).

– rectangular grid of pixels, possibly with color

– Resolution impaired if image is enlarged

• Graphics can be saved via the menu in the graphics/plots window, or a spe-
cific graphics file type can be created directly (pdf(...), win.metafile(...),
png(...) and ending with dev.off())

.64

27



6 Internal and external communication

With “internal communication” we refer to how R is organised. Whe have seen
that we can create objects (data as well as functions) in R. But how are these
objects stored internally?

With “external communication” we refer to the exchange of information be-
tween R and the operating system. We already explained how data sets can be
imported into R. We also explained how to save the plots we made. But how
do we export the results of our analyses, or the data sets that we have created or
changed in our R session? How do we save them in an R format or some other
format?

6.1 The structure of R

The internal organisation of R is not very different from the organisation of an
operating system like Windows. Objects somewhat resemble files. They can be
of different type (data.frame, function, list, . . . ), just like files can be (ASCII
text files, MS Word files, files that are used by the operating system,. . . ). All
objects (example data sets and functions) that come included with R are stored
in packages. The model fitting functions, such as lm for fitting a linear regression
model, are in the stats package. The basic functions for making graphs are in
the graphics package. The more basic functions (sqrt, table) are in the base
package.

Objects live in an environment during your R session. Environments are like
folders in an operating system. When a package is loaded, an environment is
created that contains the objects (data, functions, . . . ) from that package. When
R is started, several packages are loaded by default. The objects that we create
during our R session are in the “Workspace” environment.

Structure of R

• Objects: data, functions (statistical procedures), model output
• Environment: a collection of objects that is accessible in R session

– Objects we create: in “Workspace” (RStudio: in Global Environment
window)

– Packages with existing functions: base, stats, graphics
– When a package is loaded, a new environment is created
– Some more environments, e.g. some tools in RStudio

• search() shows the environments in the search path
ls() or objects() shows the objects in an environment

• Hierarchical structure of environments; needed for dealing with duplicate
names .65

R resembles operating system
R OS
objects files
Workspace current folder
environments folders in “path” variable
RStudio “Environment” window Explorer window
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The search command lists the loaded packages and all standard R objects (func-
tions, data)4:

> search()

[1] ".GlobalEnv" "package:RODBC" "package:tools"

[4] "package:stats" "package:graphics" "package:grDevices"

[7] "package:utils" "package:datasets" "package:methods"

[10] "Autoloads" "package:base"

We can have a look at the contents of each of these environments by changing
the default value of the name argument in the ls function.

Workspace management; connection with OS

• Save complete Workspace on disk

– R: File→ Save Workspace (or the save.image function)

– RStudio: Floppy disk icon in the Global Environment window

– Asked when you close the R session (e.g. via command: q())

• Save specific objects: via save function
• Binary format file with extension: “.RData”
• load can import R workspace or collection of R objects
• Delete objects from workspace within R via rm function

> rm(titanic3)

Remove all objects from workspace:
> rm(list=ls())

.67

Project management

• Every project (analysis) in separate folder (working directory)
• Users can have several working directories with separate .RData files and

script files
• R best started via double clicking on script file with “.R” extension. Work-

ing directory is that same folder
• Otherwise, use commands getwd and setwd or the GUI to get and set the

working directory
Note: R uses / or \\ instead of \ in path specification

• RStudio has an elegant Project concept
https://support.posit.co/hc/en-us/articles/200526207-Using-Projects

.68

6.2 Export to other formats

At the end of the analysis, you may want to use your results in a report, paper or
presentation. The creation and export of graphs has been discussed in Section 5.
For basic tables, we can use the write.table function to save it as an ASCII
file and the write.xlsx function in packages openxlsx and xlsx to save it as
Excel file. Other packages contain functions that allow for more flexibility when
saving tables in HTML or LATEX format.

4If you run this function yourself, the result may be different, because you may have other
packages loaded.
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Export tables to other formats

• Copy and paste
• Use write.table
• Function write.xlsx in package xlsx for Excel
• HTML output: packages kableExtra, xtable, R2HTML and PrettyR
• Many options for LATEX users, e.g. Hmisc, xtable

.69

For data export, we can use the foreign package. It contains the function write.dta
to save a data set in Stata format and write.foreign to save in SPSS format.
The haven package also provides several options.

For the exporting of complete model fits (stored as R objects), the standard
options in R are rather basic. We can copy and paste the ASCII output. Sev-
eral packages have been developed that allow for HTML or LATEX output (e.g.
R2HTML and PrettyR).

Better, although more time-consuming in the beginning, is to make the whole
process of a statistical analysis reproducible, starting from the data management
and ending in the final paper that will be published. More and more journals
require some form of reproducibility of the analyses that led to the submitted
paper.

The most elegant approach is to have all text and R code in a single file with
a specific format. This file is “compiled”, which means that all R code is run and
a file is generated that combines the text as well as the results of the analyses
(often in the form of tables and figures). For Windows users, the R2wd and
R2PPT packages, or the officer package (https://github.com/davidgohel/
officer) can be used to create Word or Powerpoint documents.

However, we recommended to generate MS Word files using the R Mark-

down format and the knitr package. The file CourseMain.Rmd that contains all
the example code that we showed during the course has been written in this for-
mat. In RStudio, it is very easy to convert this file to MS Word format (see https:

//support.posit.co/hc/en-us/articles/205368677-R-Markdown-Dynamic-Documents-for-R).
Instead of MS Word format, you can also choose to generate a file in HTML or
PDF format.

The knitr package can also be used to convert LATEX files with R code into
HTML or PDF files using a format that is more flexible than R Markdown5.

Reproducible research

• See Task View at
http://cran.r-project.org/web/views/ReproducibleResearch.html

• Most elegant approach: both R code and explanatory text in same file
• Compilation: run R code, and keep the surrounding text
• Recommended: use Markdown format in Rstudio

Compilation via knitr package
• https://statmodeling.stat.columbia.edu/2014/09/19/never-happened-r-markdown/

/
.70

5More information on the use of LATEX for reproducible research can be found at
https://biostat.app.vumc.org/wiki/Main/StatReport
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7 Data manipulation and inspection

Usually, collected data need some management before it is used for analysis. We
may want to sort the data set by some variable. Or we may want to combine
information that is spread over tow or more data sets. If we have longitudinal
data, i.e. several measurements within the same individual over time, sometimes
the data are in “wide” format. This means that each row contains all data from
one individual. For data analysis, it is usually required to transform such data to
“long” format, i.e. one row per measurement.

R provides functions for data management in the base package, which is
loaded by default at startup. However, there are other packages that offer more
flexibility and may be easier to use. We describe some options in the pack-
ages dplyr and tidyr. See https://cran.r-project.org/web/packages/

tidyr/vignettes/tidy-data.html for some useful suggestions on the use of
both packages. A Cheat Sheet that summarizes the functionality of both pack-
ages can be downloaded from the RStudio website.

Some functions for data management

• Sorting. Base R: sort and order. dplyr: arrange.
Rstudio: sorting in spreadsheet window (not saved in object)

• Merging. R: merge. dplyr: left_join (3 other options, see Data Trans-
formation Cheat Sheet).

• Long to wide. R: reshape. tidyr: pivot_wider
Wide to long. Base R: reshape. tidyr: pivot_longer
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In R, we can use transformed values right in the model specification. There is no
need to create a column with the transformed values. Still, creating a transformed
variable is recommended if you are going to use it a lot in your analysis.

Creating transformed variables

• Arithmetic functions: log etc.
• cut to split continuous variable into groups
• Note: transformations not needed for model fitting
• Adding variables

– Base R: via $
Functions within and transform may be helpful

– dplyr: mutate
.72

As an example of creating derived (transformed) variables, suppose we want
to categorize the age variable, and want to add a variable that shows whether
there were any relatives (sibling, spouse, parent, child) aboard. We can use the
functions cut, which is used to categorize continuous variables, and ifelse,
which is a vectorized function for conditional assignments.
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> titanic3 <- within(titanic3, {

agecat <- cut(age, breaks=c(0,18,30,40,80))

family <- factor(ifelse(parch==0 & sibsp==0, "no", "yes"))

})

> summary(titanic3[,c("age","agecat","family")])

age agecat family

Min. : 0.1667 (0,18] :193 no :790

1st Qu.: 21.0000 (18,30]:416 yes :519

Median : 28.0000 (30,40]:210 NA's: 1

Mean : 29.8811 (40,80]:227

3rd Qu.: 39.0000 NA's :264

Max. : 80.0000

NA's :264.0000

After the data have been made into the right format, a next step is often to create
some summaries. We have already seen the summary, table and xtabs func-
tions to create summaries and tables. Often, we want to create summaries for
different subgroups.

Making basic summaries

• Data summary: summary
• Contingency tables: table, xtabs
CrossTable in descr package

• Summary by subgroups

– Base R: aggregate, tapply

– Several functions in packages doBy, Hmisc, compareGroups, dplyr
• Graphical summary of data frames: dfSummary in package summarytools
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8 Documentation and help

R is very flexible and has a lot of functionality. The problem is: how do we
find the thing we need? It is impossible to know all the functions in R by heart.
Fortunately, there are many ways that help in finding the right information and
knowing some of these options quickly pays off.

First, there are the manuals. There is a reference manual that lists the help
files of the functions that comes installed with R. Help for a specific function can
also be found via the help function. When looking for a function description via
help, one has to know that R uses a programming style called object orientation
(OOP: object oriented programming). Many functions have specific methods
depending on the type (“class”) of the object that is given as argument. For ex-
ample, in a logistic regression the effects of the covariables are usually presented
as odds ratios, whereas in a linear model there is no odds ratio. Therefore, the
summary command has a specific method for every type of model. The function
that summarizes the output from a linear model is called summary.lm. The help
file for this function is found via help(summary.lm), not via help(summary).
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Another example where this object orientation (or automatic recognizing of
the type of structure) can be seen is in the plot function.
plot(age ∼ pclass, data=titanic3) gives a box plot, whereas
plot(age ∼ fare, data=titanic3) generates a scatter plot. The reason is
that pclass is of class factor.

Finding Information

• Function help. R is object oriented!
• Function help.search

• Function RSiteSearch

Opens web browser with all keyword specific info on functions from CRAN
• Package sos
• Manuals in R
• CRAN (Task Views, Vignettes, list with packages)
• http://stackoverflow.com/questions/tagged/r

• And of course ChatGPT (or similar modern AI-based chatbots)
• Have a look at the links provided at the end of the handout or at https:
//bioinformaticslaboratory.eu/gs-computing-in-r/
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9 Model fitting; formulas

Suppose we want to perform a Student’s t-test in R, comparing the age distribu-
tion of boys and girls in the Titanic data set. As a novice R user, we have no idea
what to do. Hence, we perform a search in R with help.search on the key word
“Student” (“t” as a key word would be too general). We find that there exists a
function t.test, and we have a look at its help file. From the help file, we learn
that we can specify the two groups in the “x” and “y” arguments.

> help.search("Student")

> help(t.test)

> with(titanic3,t.test(age[sex=="male"],age[sex=="female"]))

Welch Two Sample t-test

data: age[sex == "male"] and age[sex == "female"]

t = 2.0497, df = 798.36, p-value = 0.04072

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.08036699 3.71595773

sample estimates:

mean of x mean of y

30.58523 28.68707

We use the with function in order to save some writing. An alternative, less
elegant formulation is

> t.test(subset(titanic3,sex=="male")$age,subset(titanic3,sex=="female")$age)

33

http://stackoverflow.com/questions/tagged/r
https://bioinformaticslaboratory.eu/gs-computing-in-r/
https://bioinformaticslaboratory.eu/gs-computing-in-r/


A further look at the help file for t.test reveals that there is also a "formula"
way to use the function. This formula structure is based on notation introduced
by Wilkinson and Rogers, and is also used in some other statistical programs.
Once you have learned some basic rules, the formula structure turns out to be
very flexible. In R, almost all functions that fit a regression model have a formula
as the first argument. The same holds for several functions for data management
and making graphs.

Regression; Formulas
The regression equation is represented as a formula

General form dependent ∼ independent

Dependent Depends on type of model, check help file of modeling function
Independent Variable names separated by operators, without explicit reference

to parameters
fare∼ age+pclass+sex three main effects

I interactions are denoted by “:”
interaction and main effects by “∗” age∗sex= age+sex+age : sex

I formulas may involve existing functions:
log(fare), I(age+dob), sqrt(age), cut(age,breaks=3)
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The output of an analysis has many different components. It should contain at
least the parameter estimates and their standard errors. But it will also contain
information on the data set that was used (e.g. sample size). Since it has com-
ponents of different type, the output of an analysis is typically stored in a list
format.

Model output
Output model stored in a list. Results observed via functions

print Short summary of model outcome; typing name is sufficient
summary Longer summary of model description
coef Parameter values
confint Confidence intervals
anova Sequential anova table or compare two models
fitted Calculates fitted values for records in model
predict Calculates predicted values for certain values of covariates
update Used to refit the model with small changes
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> fit.age <- lm(age ~ pclass, data=titanic3)

> fit.age

Call:

lm(formula = age ~ pclass, data = titanic3)

Coefficients:

(Intercept) pclass2nd pclass3rd

39.160 -9.653 -14.344

> names(fit.age)

[1] "coefficients" "residuals" "effects" "rank" "fitted.values"

[6] "assign" "qr" "df.residual" "na.action" "contrasts"

[11] "xlevels" "call" "terms" "model"
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> coef(fit.age)

(Intercept) pclass2nd pclass3rd

39.159918 -9.653213 -14.343551

> predict(fit.age, newdata=data.frame(pclass=factor(levels(titanic3$pclass))))

1 2 3

39.15992 29.50670 24.81637

> update(fit.age,. ~ .+sex)

Call:

lm(formula = age ~ pclass + sex, data = titanic3)

Coefficients:

(Intercept) pclass2nd pclass3rd sexmale

37.182 -9.927 -14.957 3.720

Formula structure
Same formula structure in other types of analysis

• graphics

> plot(age ~ fare, data=titanic3)

• summaries (xtabs)
• packages (doBy, Hmisc, compareGroups)
• and many many more

.77

10 Programming and ply functions

10.1 Programming constructs

Statements: if-else

• R also has a conditional construct: depending on the outcome of a test,
execute one or another statement

if (logical statement){

do this

} else {

do that

}

> x <- 10

> z <- if (x < 2) 4 else 3

> z

[1] 3

.78
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Statements: repetition (I)

• Let us look at a simple example using matrix A

sample1 sample2 sample3 sample4 sample5

gene1 1 3 5 7 9

gene2 2 4 6 8 10

> results <- numeric(2)

> results

1] 0 0

> for (i in 1:2) {

results[i] <- mean(A[i, ])

}

> results

[1] 5 6

• We iteratively calculated the mean of each row
.79

Statements: repetition (II)
Imagine that you have to repeat the same analysis for many files that are all in

the same folder on your computer. A short solution using an iterative construct
would be

> files <- dir()

> for (filename in files){

infile <- read.table(filename, ...)

do something with infile

}
.80

10.2 The apply family

Apply

• Functions from the apply family are convenient shorthands for repetitions

apply(X, MARGIN, FUN, ...)

Arguments

X an array, including a matrix

MARGIN for a matrix 1 indicates rows, 2 indicates columns

FUN the function to be applied

• Taking a row-wise mean can be handled using apply

> apply(A, 1, mean)

gene1 gene2

5 6
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Similarly, you can calculate the columnwise mean and standard deviation
using apply:
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> x <- rnorm(10, -5, 0.1)

> y <- rnorm(10, 5, 2)

> X <- cbind(x, y) # the columns of X keep holding the names "x" and "y"

> X

x y

[1,] -5.146915 0.9761563

[2,] -5.225160 7.6419268

[3,] -4.978514 4.6326178

[4,] -5.083719 2.1867986

[5,] -5.083873 5.5591872

[6,] -5.002992 3.5533913

[7,] -5.075303 4.5484952

[8,] -4.908258 3.9063953

[9,] -4.973577 6.9551233

[10,] -5.105114 5.5442915

> apply(X, 2, mean)

x y

-5.058342 4.550438

> apply(X, 2, sd)

x y

0.09344694 2.03095668

Other members of the apply family

• lapply: apply a function over a list or vector
• sapply: similar to lapply but more user-friendly if output can be coerced

into a vector
• tapply: can be used to split a vector in subgroups and apply a function to

each of the subgroups
• replicate: simpler version of sapply for the repeated evaluation of an

expression. Often used for random number generation
• aggregate: extension of tapply for data frames that splits the data into

subgroups and computes summary statistics for each of the subgroups.
.82

tapply: example

• Let us again have a look at the Titanic data
> head(titanic3[,c("fare","pclass")])

fare pclass

1 211.3375 1st

2 151.5500 1st

3 151.5500 1st

4 151.5500 1st

5 151.5500 1st

6 26.5500 1st

• Now we can use tapply to calculate the mean fare per passenger class
> with(titanic3, tapply(fare, pclass, mean, na.rm=TRUE))

1st 2nd 3rd

87.50899 21.17920 13.30289

• dplyr: group_by, summarize
.83
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11 Appendix: Installation of R and its packages

R and RStudio have already been installed on the computers in the lecture room.
Below we explain how to install R and RStudio on your own PC or laptop. We
assume Windows is used, other major operating systems are also supported.

Installation Go to the R website http://www.r-project.org.
In the column on the left hand side, click on the CRAN link under the sub-
heading Download. The right hand side changes to a page with “CRAN
Mirrors”. This is a list of servers from which the R software and extensions
can be downloaded.
Click on a link (e.g. one from Austria). Now both the left hand side and
the right hand side of the page change. (This page can be saved as a book-
mark/favorite, so that the choice of CRAN mirror need not be made again.)
On the right hand side, click on Download R for Windows. Then click
on base and click on Download R-4.3.3 for Windows to download/in-
stall R-4.3.3-win.exe. It is recommended to always install the latest
version as well as to update the program if a new version is released (cur-
rently once every year, in general April). You can use the default installa-
tion options.

First Steps Start the program, e.g. via the Start menu. One window inside the
main R window is opened, which is called the R Console window. Read
the text that is shown in this window at startup.
In its basic form, the Console window serves as output window, but can
also be used as a type of script window. For example, we can write 2+2
after the “>” sign , hit the Enter key, and the value 4 is given.
Next, write the text demo(graphics) after the “>” sign and hit the Re-
turn/Enter key twice. A graphics window is opened. Hitting Return/Enter
changes the graph that is displayed. After a few more graphs, the demo
is finished. Next write the text help.start() in the console window. A
page is opened in your web browser with links to documentation, the in-
stalled “packages”, a search engine, a “Frequently Asked Questions” and a
“Windows FAQ”. If you want to become a regular R user, you are strongly
advised to read “An Introduction to R” and both FAQs.

A Further Look at the Website On the left hand side, several links are of inter-
est. The most interesting ones for a starter are the links under Documenta-
tion. The link Contributed gives access to weeks of freely download-
able reading material. Also have a look at the FAQs once you start using R
seriously. Other interesting links are Packages under Software and Task

Views and Search under CRAN.
RStudio Download RStudio from https://posit.co/downloads/ and in-

stall the program.

• Open RStudio. Via the Tools menu, we can change the appearance of
the windows (e.g. Line Wrap can be activated). Change the working
directory if needed. Via the Help menu, we can obtain a list of short-
cuts (e.g. Alt+- is a shortcut for the arrow sign “<-”, with automatic
creation of space around the arrow for increased readability).
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12 Appendix: Some useful links

You have learned the basics of R. If you want to continue using R, we provide
some links where you can find specific information that may suit your needs. See
also the course website for other pointers to useful information.

• There are several sites where you can find information by topic. The site
http://a-little-book-of-r-for-biomedical-statistics.readthedocs.org/

is aimed at biomedical statistics. It also has a nice booklet with informa-
tion.

Other useful sites are
http://www.burns-stat.com/documents/tutorials/impatient-r,
http://www.statmethods.net,
http://ww2.coastal.edu/kingw/statistics/R-tutorials/index.html,
http://www.mayin.org/ajayshah/KB/R/index.html.

• Some information is aimed at those who have quite a lot of experience
with some other program, for example the books, “R for SAS and SPSS
users” and “R for Stata Users”. More information on these books can be
found at
http://r4stats.com/.
This web site also has a freely downloadable early version of these books
(under the “Books” menu).

• There are lots of videos that explain R. A good one can be found via
http://blog.revolutionanalytics.com/2012/12/coursera-videos.html.

• Many books have been written that explain how to use R for statistical
analysis. See
http://www.r-project.org/doc/bib/R-books.html.

An overview of free manuals can be found at
http://cran.r-project.org/other-docs.html and
http://cran.r-project.org/manuals.html.
Free manuals with a detailed description of R are
https://stats.oarc.ucla.edu/ucla/books/#R.
This latter university also hosts a website with detailed examples of all
types of statistical analysis that is highly recommended
https://stats.oarc.ucla.edu/other/dae/.

• If you think you need a graphical user interface like SPSS has, there are
several options. A popular GUI for beginners in R is R Commander
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr).

Other GUIs are
https://www.jamovi.org/,
http://www.deducer.org,
https://rkward.kde.org/.
See https://r4stats.com/articles/software-reviews/r-gui-comparison/
for a comparison.

• You have learned to write your code and perform your analyses in RStu-
dio. A more extended environment is Eclipse. See https://projects.

eclipse.org/projects/science.statet.
Other editors are
Tinn-R (http://sourceforge.net/projects/tinn-r),
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WinEdt (http://www.winedt.com) together with the RWinEdt plug-in,
see http://cran.r-project.org/web/packages/RWinEdt/,
Notepad++ (http://notepad-plus-plus.org/) together with the R-
plugin (http://sourceforge.net/projects/npptor)
or Relax
https://www.uni-bielefeld.de/fakultaeten/wirtschaftswissenschaften/

fakultaet/lehrende-ehemalige/pwolf/wolf_relax/.

• A web site with many beautiful graphs and the corresponding R code is
http://rgraphgallery.blogspot.nl/.

40

http://www.winedt.com
http://cran.r-project.org/web/packages/RWinEdt/
http://notepad-plus-plus.org/
http://sourceforge.net/projects/npptor
https://www.uni-bielefeld.de/fakultaeten/wirtschaftswissenschaften/fakultaet/lehrende-ehemalige/pwolf/wolf_relax/
https://www.uni-bielefeld.de/fakultaeten/wirtschaftswissenschaften/fakultaet/lehrende-ehemalige/pwolf/wolf_relax/
http://rgraphgallery.blogspot.nl/

	I Day 1 and 2
	Introduction
	Basics
	Syntax: data
	Data structures
	Data import

	Functions etc.
	Functions
	Selections
	Special types
	Missing data
	Factors
	Dates



	II Day 3 and 4
	Graphics
	Basic graphics
	Other types of graphics

	Communication
	The structure of R
	Export to other formats

	Data management
	Help
	Model fitting; formulas
	Programming and ply functions
	Programming constructs
	The apply family

	Installation
	Links


