
Computing in

Amsterdam UMC Doctoral School
March 11-15, 2024

Perry Moerland (and Ronald Geskus)
Aldo Jongejan and Michel Hof
Dept. of Epidemiology and Data Science
Amsterdam UMC, Meibergdreef 9, Amsterdam, the Netherlands



Introduction Basics Syntax: data Functions etc.

Part I

Day 1 and 2



Introduction Basics Syntax: data Functions etc.

Outline

Introduction

Basics

Syntax: data
Data structures
Data import and export, external formats

Functions; selections; special data types
Functions
Selections
Some special data types

Missing data
Factors
Dates



Introduction Basics Syntax: data Functions etc.

Course setup

• Course aim: become familiar with the basics of R

• Four days, one morning session per day: 9:00-12:00

• Mix of interactive lectures and computer exercises

• Course website: https:

//bioinformaticslaboratory.eu/gs-computing-in-r/

• Comments and suggestions for improvement are most welcome

https://bioinformaticslaboratory.eu/gs-computing-in-r/
https://bioinformaticslaboratory.eu/gs-computing-in-r/


Introduction Basics Syntax: data Functions etc.

Stages in statistical analysis

1. Importing data into statistical program

2. Inspection of data
• finding errors, cleaning
• recoding and transforming
• description and summarizing of the data

using spreadsheets, tables and graphics

3. Analysis: estimation, uncertainty (confidence intervals,
p-value), predictive value

4. Model validation
Check the assumptions of the model

5. Reporting of results
summary, tables, graphics
export



Introduction Basics Syntax: data Functions etc.

Characteristics of a statistical program

1. Two ways to perform the task
• Via the menu, graphical user interface (GUI)
• Writing code in a script (syntax) window

Actions performed via the menu can also be saved in a script

2. At least five windows
• Script (syntax).

A good editor is really helpful
• Results (output).

Often in structured markup language (html, Word, ODF (open
document format), LATEX)

• Graphics.
Can be saved in various formats (pdf, wmf, png)
Sometimes combined with results window (SPSS)

• Spreadsheet. To see the complete data set.
• Help. In program or via web browser.



Introduction Basics Syntax: data Functions etc.

Characteristics of a statistical program

1. Two ways to perform the task
• Via the menu, graphical user interface (GUI)
• Writing code in a script (syntax) window

Actions performed via the menu can also be saved in a script

2. At least five windows
• Script (syntax).

A good editor is really helpful
• Results (output).

Often in structured markup language (html, Word, ODF (open
document format), LATEX)

• Graphics.
Can be saved in various formats (pdf, wmf, png)
Sometimes combined with results window (SPSS)

• Spreadsheet. To see the complete data set.
• Help. In program or via web browser.



Introduction Basics Syntax: data Functions etc.

R: What is it?

• On http://www.r-project.org/about.html: “a language
and environment for statistical computing and graphics”

• Free statistical package: no money and open source

• Runs on all major operating systems

• Standard distribution with basic statistical procedures
• Extensions via packages

• Recommended; come installed together with R
• Thousands more; can be installed from the R website

• Hard to learn(?)

• Very powerful language; has become very popular over the
past 10-15 years

http://www.r-project.org/about.html


Introduction Basics Syntax: data Functions etc.

R: What is it?

• On http://www.r-project.org/about.html: “a language
and environment for statistical computing and graphics”

• Free statistical package: no money and open source

• Runs on all major operating systems

• Standard distribution with basic statistical procedures
• Extensions via packages

• Recommended; come installed together with R
• Thousands more; can be installed from the R website

• Hard to learn(?)

• Very powerful language; has become very popular over the
past 10-15 years

http://www.r-project.org/about.html


Introduction Basics Syntax: data Functions etc.

Characteristics of a statistical program: R

1. Two ways to perform the task
• Via the menu (GUI)

• Standard R: very few options
• GUI: Rcmdr, jamovi and others (see links at the end of the

handouts).

• Via scripts. Saved in file with “.R” extension

2. Windows in R
• Standard R: opens with “Console”

Can be used for simple calculations; input and output in same
window
Script window can be opened; results still in Console

• RStudio: Many windows (Console, Environment, History, . . . )
Can be customized



Introduction Basics Syntax: data Functions etc.

Characteristics of a statistical program: R

1. Two ways to perform the task
• Via the menu (GUI)

• Standard R: very few options
• GUI: Rcmdr, jamovi and others (see links at the end of the

handouts).

• Via scripts. Saved in file with “.R” extension

2. Windows in R
• Standard R: opens with “Console”

Can be used for simple calculations; input and output in same
window

Script window can be opened; results still in Console
• RStudio: Many windows (Console, Environment, History, . . . )

Can be customized



Introduction Basics Syntax: data Functions etc.

Don’t be afraid of the console

• Try it yourself: start R version 4.3.3 via Starten - Alle
programma’s - R - R 4.3.3 . . . This opens the R Console



Introduction Basics Syntax: data Functions etc.

Characteristics of a statistical program: R

1. Two ways to perform the task
• Via the menu (GUI)

• Standard R: very few options
• GUI: Rcmdr, jamovi and others (see links at the end of the

handouts).

• Via scripts. Saved in file with “.R” extension

2. Windows in R
• Standard R: opens with “Console”

Can be used for simple calculations; input and output in same
window
Script window can be opened; results still in Console

• RStudio: Many windows (Console, Environment, History, . . . )
Can be customized



Introduction Basics Syntax: data Functions etc.

Don’t be afraid of the console

• Try it yourself: start R version 4.3.3 via Starten - Alle
programma’s - R - R 4.3.3 . . . This opens the R Console



Introduction Basics Syntax: data Functions etc.

Outline

Introduction

Basics

Syntax: data
Data structures
Data import and export, external formats

Functions; selections; special data types
Functions
Selections
Some special data types

Missing data
Factors
Dates



Introduction Basics Syntax: data Functions etc.

R as a pocket calculator

• First of all, R can be used as a pocket calculator

• Many mathematical operations are pre-defined in R

> 2+7

[1] 9

> sqrt(2)

[1] 1.414214

> cos(pi)

[1] -1

> log10(10^3)

[1] 3



Introduction Basics Syntax: data Functions etc.

A simple R session

• Now we are ready to type some R code

> x <- 2

> x

[1] 2

• The left arrow <- denotes an assignment statement. This
stores a value in object x, that can then be used later on.
• Remember: without assignment, it’s lost

> x^2

[1] 4

> x

[1] 2



Introduction Basics Syntax: data Functions etc.

Interacting with the R Console

• Use up/down keys to go back/forth on the command history.

y < - x

Can easily be corrected using the up key:

y <- x

• Use CTRL+A or HOME to go to the start of a line

• Use CTRL+E or END to go to the end of a line

• Use TAB to complete pre-defined words and filenames

• If for some reason R gets stuck try ESC (Windows) or
CTRL+C (Mac, Linux)



Introduction Basics Syntax: data Functions etc.

Interacting with the R Console

• Use up/down keys to go back/forth on the command history.

y < - x

Can easily be corrected using the up key:

y <- x

• Use CTRL+A or HOME to go to the start of a line

• Use CTRL+E or END to go to the end of a line

• Use TAB to complete pre-defined words and filenames

• If for some reason R gets stuck try ESC (Windows) or
CTRL+C (Mac, Linux)



Introduction Basics Syntax: data Functions etc.

Interacting with the R Console

• Use up/down keys to go back/forth on the command history.

y < - x

Can easily be corrected using the up key:

y <- x

• Use CTRL+A or HOME to go to the start of a line

• Use CTRL+E or END to go to the end of a line

• Use TAB to complete pre-defined words and filenames

• If for some reason R gets stuck try ESC (Windows) or
CTRL+C (Mac, Linux)



Introduction Basics Syntax: data Functions etc.

Help (I)

If you want to know more about an operator or function just use
help (or ?)

> help(sqrt)

MathFun package:base

Description:

sqrt(x) computes the (principal) square root of x.

Usage:

sqrt(x)



Introduction Basics Syntax: data Functions etc.

Functions

• help is another example of a function

• The basic R distribution consists of a large collection of
functions

• Functions generate some output given some input

• The inputs are specified via arguments of the function
between parentheses ( ):
name_of_function(argument_1)

• help(sqrt): sqrt is argument of function help

• The output of a function can be a value written to the
Console or assigned to an object, a figure, a help page, ...



Introduction Basics Syntax: data Functions etc.

Packages

• Functions in R are in general part of a package, such as the
base package for sqrt

• Only the standard packages are loaded when you start R:
base, graphics, stats, utils . . .

• Other packages are loaded by the library command

• library() shows the packages installed on your computer

• help(package=stats) gives help on all functions defined in
stats

• Running help.start() launches a web browser that allows
all (installed) help pages to be browsed with hyperlinks



Introduction Basics Syntax: data Functions etc.

Help (II)

> help(mean)

Description: Generic function for the (trimmed) arithmetic mean.

Usage: mean(x, ...)

## Default S3 method:

mean(x, trim = 0, na.rm = FALSE, ...)

Arguments

x: An R object. Currently there are methods for numeric/log-

ical vectors and date, date-time and time interval objects.

Complex vectors are allowed for trim = 0, only ...

Value

If trim is zero (the default), the arithmetic mean of the val-

ues in x is computed, as a numeric or complex vector ...



Introduction Basics Syntax: data Functions etc.

Help (III)

Outline of a help page is always the same:

• Description: what does the function do

• Usage: what arguments does the function expect

• Arguments: description of the individual arguments

• Value: what is the result of a function call

• Details, references, See Also

• Example: example(mean)



Introduction Basics Syntax: data Functions etc.

Outline

Introduction

Basics

Syntax: data
Data structures
Data import and export, external formats

Functions; selections; special data types
Functions
Selections
Some special data types

Missing data
Factors
Dates



Introduction Basics Syntax: data Functions etc.

Vectors (I)

A vector is one of the basic data structures in R:

> x <- c(10, 9, 8, 7, 6, 5, 4, 3, 2, 1)

> x

[1] 10 9 8 7 6 5 4 3 2 1

These commands also give a vector of the numbers 10 to 1:

> x <- seq(from = 10, to = 1, by = -1)

> x <- seq(10, 1)

> x <- 10:1

c (short for concatenate) and seq are functions as well



Introduction Basics Syntax: data Functions etc.

Vectors (I)

A vector is one of the basic data structures in R:

> x <- c(10, 9, 8, 7, 6, 5, 4, 3, 2, 1)

> x

[1] 10 9 8 7 6 5 4 3 2 1

These commands also give a vector of the numbers 10 to 1:

> x <- seq(from = 10, to = 1, by = -1)

> x <- seq(10, 1)

> x <- 10:1

c (short for concatenate) and seq are functions as well



Introduction Basics Syntax: data Functions etc.

Vectors (II)

• Vectors can be indexed using square brackets [ ]:

> x[5] + x[10]

[1] 7

• Negative indices exclude elements from a vector:

> c(-5, -10)

[1] -5 -10

> x[c(-5, -10)]

[1] 10 9 8 7 5 4 3 2

• Indices can be used to replace an element of a vector

> x[4] <- 12

> x

[1] 10 9 8 12 6 5 4 3 2 1



Introduction Basics Syntax: data Functions etc.

Vectors (III)

• Functions can be applied to vectors:

> mean(x)

[1] 6

• Many calculations are vectorized:

> x + 1

[1] 11 10 9 13 7 6 5 4 3 2

> 2*x

[1] 20 18 16 24 12 10 8 6 4 2



Introduction Basics Syntax: data Functions etc.

Matrices (I)

• From one to two dimensions:

> help(matrix)

matrix package:base

...

Usage:

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,

dimnames = NULL)

• Note: arguments to a function can be supplied by name or by
position



Introduction Basics Syntax: data Functions etc.

Matrices (II)

• Matrices store data in a table-like structure, with rows and
columns:

> A <- matrix(data = 1:10, nrow = 2, ncol = 5)

> A <- matrix(1:10, 2, 5)

> A

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

• Indexing is simple (elements):

> A[2, 3]

[1] 6

• Indices can be used to replace an element of a matrix

A[2,3] <- 12



Introduction Basics Syntax: data Functions etc.

Matrices (III)

• Selecting entire row(s)

> A[1, ] # Same as A[1,1:5]

[1] 1 3 5 7 9

• Selecting entire column(s)

> A[, c(1, 5)] # Same as A[1:2, c(1,5)]

[,1] [,2]

[1,] 1 9

[2,] 2 10

• Functions can be applied to matrices:

> dim(A[, c(1, 5)])

[1] 2 2

• The generalization to any number of dimensions is an array



Introduction Basics Syntax: data Functions etc.

Objects (I)

• Scalars, vectors, matrices are examples of objects. You can
get an overview of all objects you created until now via ls
(short for list)

> ls()

[1] "A" "x"

• Many R functions are defined on any type of data. Examples
are:

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 3.25 5.50 6.00 8.75 12.00

• Try summary(A)



Introduction Basics Syntax: data Functions etc.

Object names

• An object can have almost any name you choose: patients,

Data, abc, sorted.results_file

• No space

• No special characters such as @,$,+ etc.

• and . are allowed

• Numbers allowed but not as first character

• Avoid names that are functions in R: sort, c, mean, t,

data, q

• Some names are not allowed (reserved for programming
constructs): for, if, while . . .

• Names are case-sensitive: Data is not the same as data



Introduction Basics Syntax: data Functions etc.

Modes

• R has several atomic modes, the most important ones are:
• numeric:

> c(1, 2, 3, 4)

• logical : Boolean values: TRUE, FALSE

> -2 < 2

[1] TRUE

• character :

> letters[1:3]

[1] "a" "b" "c"

• You can change the mode of an object

> as.character(x)

[1] "10" "9" "8" "12" "6" "5" "4" "3" "2"

[10] "1"

• Modes can be mixed in lists, we’ll come back to that later



Introduction Basics Syntax: data Functions etc.

Modes: logical (I)

• Booleans (TRUE, FALSE) can also be used as an index:

> x

[1] 10 9 8 12 6 5 4 3 2 1

> x[c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,

FALSE, TRUE, FALSE)]

[1] 10 8 6 4 2

• Making Booleans by comparing numbers:
Less/greater: <, >, <=, >=
Exact equality: ==

Not equal to: !=

> x[x>5]

[1] 10 9 8 12 6

• %in%: to test which values are part of a set of specified values

• Booleans are converted to integers if a numeric value is
required: TRUE equals 1, FALSE equals 0



Introduction Basics Syntax: data Functions etc.

Modes: logical (II)

You can calculate with Booleans. Main operators are:

• &: AND - all must be true

• |: OR - at least one must be true

• !: NOT - negation

> TRUE & FALSE

[1] FALSE

> TRUE | FALSE

[1] TRUE

> x>5 & x<8

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

[9] FALSE FALSE



Introduction Basics Syntax: data Functions etc.

Naming (I)

• A useful concept in R is access by names:

> m <- c(1,2,3,4)

> names(m) <- c("gene1","gene2","gene3","gene4")

> m

gene1 gene2 gene3 gene4

1 2 3 4

• We can also give names to rows and columns of matrix A:

> rownames(A) <- c("gene1", "gene2")

> colnames(A) <- c("sample1", "sample2", "sample3",

"sample4", "sample5")



Introduction Basics Syntax: data Functions etc.

Naming (II)

• We can now index by name instead of by number or Boolean:

> A

sample1 sample2 sample3 sample4 sample5

gene1 1 3 5 7 9

gene2 2 4 12 8 10

> A["gene1", ]

sample1 sample2 sample3 sample4 sample5

1 3 5 7 9

• Indexing by name rather than by number makes code more
readable: Data["BRCA1",] instead of Data[4137,]



Introduction Basics Syntax: data Functions etc.

RStudio

• Open RStudio via Starten - Alle programma’s - R - RStudio

• A so-called integrated development environment (IDE)

• Editor, Console, Environment, History, Plots, etc in one
environment

• Download the script file CourseMain.R from https:

//bioinformaticslaboratory.eu/gs-computing-in-r/

to execute the R code used during the lecture

https://bioinformaticslaboratory.eu/gs-computing-in-r/
https://bioinformaticslaboratory.eu/gs-computing-in-r/


Introduction Basics Syntax: data Functions etc.

Lists (I)

• Something is needed for mixing different modes, for example

character and numeric:

> c("gene1", 5)

[1] "gene1" "5"

• This can be done by lists:

> list(gene = "gene1", number = 5)

$gene

[1] "gene1"

$number

[1] 5

• gene and number are called components



Introduction Basics Syntax: data Functions etc.

Lists (II)

• Lists can be indexed in various ways:
• As vectors, with square brackets. This returns a list:

> x <- list(gene = "gene1", number = 5)

> x[1]

$gene

[1] "gene1"

• With double square brackets. This extracts a component:

> x[[1]]

[1] "gene1"

• Or equivalently, by name using the $ operator (if the list is
named):

> x$gene

[1] "gene1"



Introduction Basics Syntax: data Functions etc.

Data frames (I)

• A special kind of list is a matrix with mixed modes, e.g., rows
correspond to individuals and columns to variables of different
modes.

• All elements within a column should be of the same mode

• In R, this is dealt with by a data.frame

• External data (of the tab-delimited type, for example)
imported via read.table is of class data.frame:

read.table package:base

Description:

Reads a file in table format and creates a data frame

from it, with cases corresponding to lines and

variables to fields in the file.



Introduction Basics Syntax: data Functions etc.

Constructing a data frame

> pclass <- c("1st","2nd","1st")

> survived <- c(1,1,0)

> name <- c("Elisabeth Walton","Hudson Trevor","Helen Loraine")

> age <- c(29.0,0.9167,2.0)

> titanic <- data.frame(pclass,survived,name,age)

> titanic

pclass survived name age

1 1st 1 Elisabeth Walton 29.0000

2 2nd 1 Hudson Trevor 0.9167

3 1st 0 Helen Loraine 2.0000



Introduction Basics Syntax: data Functions etc.

Data frames (II)

• Data frames can be indexed like a matrix

> titanic[c(2,3),c("name","age")]

name age

2 Hudson Trevor 0.9167

3 Helen Loraine 2.0000

• Columns of a data frame can be indexed like a list, with $ and
[[ ]]

titanic$age # titanic[["age"]] gives the same result

[1] 29.0000 0.9167 2.0000

• $ and [[ ]] do not work for rows, use subset instead (see
later)



Introduction Basics Syntax: data Functions etc.

Data frames (III)

For large data frames, several useful functions exist to get a more
compact overview

• dim gives the number of rows and columns

• head shows the first six rows of a data frame

> dim(titanic3)

[1] 1309 17

> head(titanic3[,1:4])

pclass survived name sex

1 1st 1 Allen, Miss. Elisabeth Walton female

2 1st 1 Allison, Master. Hudson Trevor male

3 1st 0 Allison, Miss. Helen Loraine female

4 1st 0 Allison, Mr. Hudson Joshua Crei male

5 1st 0 Allison, Mrs. Hudson J C (Bessi female

6 1st 1 Anderson, Mr. Harry male



Introduction Basics Syntax: data Functions etc.

Data frames (IV)

• tail: similar to head but shows the last 6 rows

• str: compact display of the internal structure of an R object

> str(titanic3[,1:4])

'data.frame': 1309 obs. of 4 variables:

$ pclass : Factor w/ 3 levels "1st","2nd","3rd": 1 1 1 1 1 1 1 1 1 1 ...

$ survived: num 1 1 0 0 0 1 1 0 1 0 ...

$ name : chr "Allen, Miss. Elisabeth Walton" "Allison, Master. Hud-

son Trevor" "Allison, Miss. Helen Loraine" "Allison, Mr. Hudson Joshua Crei" ...

$ sex : Factor w/ 2 levels "female","male": 1 2 1 2 1 2 1 2 1 2 ...

• summary

• View: opens a spreadsheet-style data viewer. In RStudio click
on the name of an object in the Environment tab.

• fix: opens a spreadsheet-style data editor



Introduction Basics Syntax: data Functions etc.

Recapitulation: objects

You have seen the most important data objects in R:

• vectors

• matrices are a two-dimensional extension of vectors

• lists are a general form of vectors in which the various
elements need not be of the same mode

• data frames are matrix-like structures, in which the columns
can be of different modes

• Indexing of these objects can be done by number, by name,
and using Booleans.



Introduction Basics Syntax: data Functions etc.

The return of the help file

> ?mean

Description: Generic function for the (trimmed) arithmetic mean.

Usage: mean(x, ...)

## Default S3 method:

mean(x, trim = 0, na.rm = FALSE, ...)

Arguments

x: An R object. Currently there are methods for numeric/log-

ical vectors and date, date-time and time interval objects. Com-

plex vectors are allowed for trim = 0, only.

Value

If trim is zero (the default), the arithmetic mean of the val-

ues in x is computed, as a numeric or complex vector ...



Introduction Basics Syntax: data Functions etc.

Data import and export: text format

• Data frames in ASCII text format (of the tab-delimited type,
for example) can be imported via read.table:
• Many arguments (see help(read.table))

read.table(file, header = FALSE, sep = "", quote = "\"’",

dec = ".",row.names, col.names, as.is = !stringsAsFactors,

na.strings = "NA", colClasses = NA, nrows = -1, skip = 0,

check.names = TRUE, fill = !blank.lines.skip, ...)

• read.csv and read.delim are identical to read.table

apart from other defaults: they are intended for
comma-separated and tab-delimited files, respectively.

• Export to ASCII file: write.table



Introduction Basics Syntax: data Functions etc.

Data import of ASCII text format: common problems

• Common problems when reading in tabular data are (especially
when you use “Save as - tab-delimited file” from Excel):
• Additional tabs: between columns or at the end of a row
• Extra carriage returns at the end of the file
• Unusual characters such as the # symbol (see option
comment.char) and " quotes (see option quote)

• Presence of blank fields
• Regional settings problems: decimal separator
• Invisible spaces

• Use dim, head etc to compare the imported data with the
original data file

• Be careful when using Excel as an intermediate in
manipulating files:
https://www.bbc.com/news/technology-54423988

https://www.bbc.com/news/technology-54423988


Introduction Basics Syntax: data Functions etc.

Basic data import/export from other formats

• Data formats: sav (SPSS), xls, xlsx (Excel), mdb (Access),
dta (STATA), txt, csv
• sav, xls, dta, txt, csv: Imported via a function “read.”. E.g. a

STATA file titanic3.dta can be imported via the
commands

> library(foreign)

> titanic3 <- read.dta("Exercises/titanic3.dta")

• xlsx files: packages openxlsx and readxl (also xls files)
• SPSS, Stata, and SAS files: package haven
• In RStudio via the menu Import Dataset. See
https://support.posit.co/hc/en-us/articles/

218611977-Importing-Data-with-RStudio
• Export to other formats via a function “write.” :
write.dta, write.foreign
• See R Data Import/Export Manual under Help or Help - R

Help (RStudio)
• See http://r4stats.com/examples/data-import/

https://support.posit.co/hc/en-us/articles/218611977-Importing-Data-with-RStudio
https://support.posit.co/hc/en-us/articles/218611977-Importing-Data-with-RStudio
http://r4stats.com/examples/data-import/


Introduction Basics Syntax: data Functions etc.

Outline

Introduction

Basics

Syntax: data
Data structures
Data import and export, external formats

Functions; selections; special data types
Functions
Selections
Some special data types

Missing data
Factors
Dates



Introduction Basics Syntax: data Functions etc.

Functions: basic format

• All actions are performed via functions
• “Basic” functions: sqrt, mean, help, library
• Functions for analysis: t.test, lm, plot

• Input: required and optional arguments; within parentheses
(sqrt(2), help(seq)), separated by comma
• required: need to be supplied
• optional: have default values

Beware of sequence of arguments; required ones come first
e.g. log(x, base = exp(1)), x required, base optional.
Argument names can be abbreviated if no risk of ambiguity

• Special “argument” . . . : anything that makes sense, e.g. in c

and paste function

• Output: result of calculations (typically assigned to R object),
graphics, help window, . . .

• You can use functions within other functions, e.g.
mean(c(3,6,8))



Introduction Basics Syntax: data Functions etc.

Functions: basic format

• All actions are performed via functions
• “Basic” functions: sqrt, mean, help, library
• Functions for analysis: t.test, lm, plot

• Input: required and optional arguments; within parentheses
(sqrt(2), help(seq)), separated by comma
• required: need to be supplied
• optional: have default values

Beware of sequence of arguments; required ones come first
e.g. log(x, base = exp(1)), x required, base optional.
Argument names can be abbreviated if no risk of ambiguity

• Special “argument” . . . : anything that makes sense, e.g. in c

and paste function

• Output: result of calculations (typically assigned to R object),
graphics, help window, . . .

• You can use functions within other functions, e.g.
mean(c(3,6,8))



Introduction Basics Syntax: data Functions etc.

Functions: basic format

• All actions are performed via functions
• “Basic” functions: sqrt, mean, help, library
• Functions for analysis: t.test, lm, plot

• Input: required and optional arguments; within parentheses
(sqrt(2), help(seq)), separated by comma
• required: need to be supplied
• optional: have default values

Beware of sequence of arguments; required ones come first
e.g. log(x, base = exp(1)), x required, base optional.
Argument names can be abbreviated if no risk of ambiguity

• Special “argument” . . . : anything that makes sense, e.g. in c

and paste function

• Output: result of calculations (typically assigned to R object),
graphics, help window, . . .

• You can use functions within other functions, e.g.
mean(c(3,6,8))



Introduction Basics Syntax: data Functions etc.

Functions: basic format

• All actions are performed via functions
• “Basic” functions: sqrt, mean, help, library
• Functions for analysis: t.test, lm, plot

• Input: required and optional arguments; within parentheses
(sqrt(2), help(seq)), separated by comma
• required: need to be supplied
• optional: have default values

Beware of sequence of arguments; required ones come first
e.g. log(x, base = exp(1)), x required, base optional.
Argument names can be abbreviated if no risk of ambiguity

• Special “argument” . . . : anything that makes sense, e.g. in c

and paste function

• Output: result of calculations (typically assigned to R object),
graphics, help window, . . .

• You can use functions within other functions, e.g.
mean(c(3,6,8))



Introduction Basics Syntax: data Functions etc.

Functions: basic format

• All actions are performed via functions
• “Basic” functions: sqrt, mean, help, library
• Functions for analysis: t.test, lm, plot

• Input: required and optional arguments; within parentheses
(sqrt(2), help(seq)), separated by comma
• required: need to be supplied
• optional: have default values

Beware of sequence of arguments; required ones come first
e.g. log(x, base = exp(1)), x required, base optional.
Argument names can be abbreviated if no risk of ambiguity

• Special “argument” . . . : anything that makes sense, e.g. in c

and paste function

• Output: result of calculations (typically assigned to R object),
graphics, help window, . . .

• You can use functions within other functions, e.g.
mean(c(3,6,8))



Introduction Basics Syntax: data Functions etc.

Functions: the inside

• Function code can be seen by leaving out the parentheses ( )

• General structure: function(args) SOME R CODE

with SOME R CODE a collection of other functions as
compound expression

• Compound expressions are placed within “{ ” and “ }”:
> z <- {

x <- 2

y <- x + 2

}

> z

[1] 4

• A compound expression returns the last value



Introduction Basics Syntax: data Functions etc.

Functions: the inside

• Function code can be seen by leaving out the parentheses ( )

• General structure: function(args) SOME R CODE

with SOME R CODE a collection of other functions as
compound expression
• Compound expressions are placed within “{ ” and “ }”:

> z <- {

x <- 2

y <- x + 2

}

> z

[1] 4

• A compound expression returns the last value



Introduction Basics Syntax: data Functions etc.

Functions and packages

• You can write your own functions:

> good.morning <- function(work){

if(work==TRUE) cat("wake up") else

cat("you can stay in bed")

}

Note: here the function is saved in the object good.morning

• Can make it into a package, i.e. a collection of functions (and
data):
survival, ggplot2, Rcmdr
sudoku, scuba, engsoccerdata
See http://cran.r-project.org/web/packages/

• R Reference Card 2.0 for overview of most important functions

http://cran.r-project.org/web/packages/
http://cran.r-project.org/doc/contrib/Baggott-refcard-v2.pdf


Introduction Basics Syntax: data Functions etc.

Functions and packages

• You can write your own functions:

> good.morning <- function(work){

if(work==TRUE) cat("wake up") else

cat("you can stay in bed")

}

Note: here the function is saved in the object good.morning

• Can make it into a package, i.e. a collection of functions (and
data):
survival, ggplot2, Rcmdr
sudoku, scuba, engsoccerdata
See http://cran.r-project.org/web/packages/

• R Reference Card 2.0 for overview of most important functions

http://cran.r-project.org/web/packages/
http://cran.r-project.org/doc/contrib/Baggott-refcard-v2.pdf


Introduction Basics Syntax: data Functions etc.

Functions and packages

• You can write your own functions:

> good.morning <- function(work){

if(work==TRUE) cat("wake up") else

cat("you can stay in bed")

}

Note: here the function is saved in the object good.morning

• Can make it into a package, i.e. a collection of functions (and
data):
survival, ggplot2, Rcmdr
sudoku, scuba, engsoccerdata
See http://cran.r-project.org/web/packages/

• R Reference Card 2.0 for overview of most important functions

http://cran.r-project.org/web/packages/
http://cran.r-project.org/doc/contrib/Baggott-refcard-v2.pdf


Introduction Basics Syntax: data Functions etc.

Selection of rows and columns

• Index: [ ] (vector) or [row, col] (data frame)
• By character: titanic3[,"sex"],
titanic3[,c("age","sex")],
islands["Moluccas"]

• By number: titanic3[,4], titanic3[-1,]
• By logical: titanic3[titanic3[,"sex"] != "male",]

• Columns in data frame can also be selected via $, e.g.
titanic3$sex

• We can assign values to selections or new columns

> titanic3[3,"age"] <- 23.4

> my.data$bmi <- my.data$weight/(my.data$height)^2



Introduction Basics Syntax: data Functions etc.

Selection of rows and columns

• Index: [ ] (vector) or [row, col] (data frame)
• By character: titanic3[,"sex"],
titanic3[,c("age","sex")],
islands["Moluccas"]

• By number: titanic3[,4], titanic3[-1,]
• By logical: titanic3[titanic3[,"sex"] != "male",]

• Columns in data frame can also be selected via $, e.g.
titanic3$sex

• We can assign values to selections or new columns

> titanic3[3,"age"] <- 23.4

> my.data$bmi <- my.data$weight/(my.data$height)^2



Introduction Basics Syntax: data Functions etc.

Selection of rows and columns

• Index: [ ] (vector) or [row, col] (data frame)
• By character: titanic3[,"sex"],
titanic3[,c("age","sex")],
islands["Moluccas"]

• By number: titanic3[,4], titanic3[-1,]
• By logical: titanic3[titanic3[,"sex"] != "male",]

• Columns in data frame can also be selected via $, e.g.
titanic3$sex

• We can assign values to selections or new columns

> titanic3[3,"age"] <- 23.4

> my.data$bmi <- my.data$weight/(my.data$height)^2



Introduction Basics Syntax: data Functions etc.

Selection of rows via functions

• Via special functions: head, tail, subset
subset(my.data, ...) with . . . a logical condition

> subset(titanic3, pclass %in% c("1st","2nd"))

(remember that %in%—“belongs to”—is a Boolean construct)

• Many functions have a subset argument
Often combined with formula structure

> xtabs(~survived, data=titanic3, subset=(sex=="male"))



Introduction Basics Syntax: data Functions etc.

Selection of columns via functions

• Via with function:

> table(titanic3$sex, titanic3$survived)

> with(titanic3, table(sex, survived))

• Many functions have a data argument, combined with formula
structure

> xtabs(~sex+survived, data=titanic3)

• Via select argument of subset function

• Don’t use “$” for column selection if function has a data
argument
Don’t write:

> xtabs(~titanic3$sex+titanic3$survived, data=titanic3)



Introduction Basics Syntax: data Functions etc.

Selection of columns via functions

• Via with function:

> table(titanic3$sex, titanic3$survived)

> with(titanic3, table(sex, survived))

• Many functions have a data argument, combined with formula
structure

> xtabs(~sex+survived, data=titanic3)

• Via select argument of subset function

• Don’t use “$” for column selection if function has a data
argument
Don’t write:

> xtabs(~titanic3$sex+titanic3$survived, data=titanic3)



Introduction Basics Syntax: data Functions etc.

Missing data

• Special value: NA (short for “not available”)

• The function is.na checks for missingness

> table(is.na(titanic3$age))

FALSE TRUE

1046 263

• Within functions, missings are often excluded by default, but
not always
• quantile, mean give error if there are missings; specify

argument na.rm=TRUE
• table excludes missings, include them via argument
useNA="always"



Introduction Basics Syntax: data Functions etc.

Missing data

• Special value: NA (short for “not available”)

• The function is.na checks for missingness

> table(is.na(titanic3$age))

FALSE TRUE

1046 263

• Within functions, missings are often excluded by default, but
not always
• quantile, mean give error if there are missings; specify

argument na.rm=TRUE
• table excludes missings, include them via argument
useNA="always"



Introduction Basics Syntax: data Functions etc.

Factors: what are they?

• Categorical variable with “levels”

> DiseaseState <- factor(c("Cancer", "Cancer", "Normal"))

> DiseaseState

[1] Cancer Cancer Normal

Levels: Cancer Normal

> levels(DiseaseState)

[1] "Cancer" "Normal"

• Ordering: default is alphabetical/numeric
• Internally represented as integers 1, 2, . . .

> as.numeric(DiseaseState)

[1] 1 1 2



Introduction Basics Syntax: data Functions etc.

Factors: how to create?

• By default, character columns are converted into factor if data
are read from other statistical programs. Numeric codings
(e.g. 999) are not converted by default.
• Create or manipulate via factor function

• Required argument x: vector with values
• Optional argument levels: vector of unique values in x;

sequence determines ordering. Compare

> table(factor(DiseaseState))

> table(factor(DiseaseState, levels=c("Normal","Cancer")))

• Optional argument labels: labels given to levels.
Default: same as levels

• Useful in statistical models.
Standard in R: first group is reference group.
Choice of reference group changed via relevel:

> relevel(DiseaseState, "Normal")



Introduction Basics Syntax: data Functions etc.

Factors: how to create?

• By default, character columns are converted into factor if data
are read from other statistical programs. Numeric codings
(e.g. 999) are not converted by default.
• Create or manipulate via factor function

• Required argument x: vector with values
• Optional argument levels: vector of unique values in x;

sequence determines ordering. Compare

> table(factor(DiseaseState))

> table(factor(DiseaseState, levels=c("Normal","Cancer")))

• Optional argument labels: labels given to levels.
Default: same as levels

• Useful in statistical models.
Standard in R: first group is reference group.
Choice of reference group changed via relevel:

> relevel(DiseaseState, "Normal")



Introduction Basics Syntax: data Functions etc.

Dates

• Numeric value (units since time origin) with character
representation

• Origin: SPSS: October 14, 1582 (seconds);
R: January 1st, 1970 (days);
STATA: January 1st, 1960 (days)
• SPSS files read into R via read.spss in foreign package

need to be converted

> my.data$date <- as.Date(my.data$date+ISOdate(1582,10,14) )

The haven package makes the conversion automatically

• R is very flexible in conversion between textual date
representations

• as.Date: create date variable
format: change display format



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Part II

Day 3 and 4



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Outline

Graphics
Basic graphics
Other types of graphics

Internal and external communication
The structure of R
Export to other formats

Data manipulation and inspection

Documentation and help

Model fitting; formulas

Programming and ply functions
Programming constructs
The apply family



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

R has versatile tools for graphics. There are typically three steps to
producing useful graphics:

1. Creating the basic plot

2. Enhancing the plot with labels, legends, colors etc.

3. Exporting the plot from R for use elsewhere



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Basic plot (I)
It is straightforward to make a simple plot using functions from the
graphics package (loaded by default):

> x <- (0:100)/10

> plot(x, x^3 - 13 * x^2 + 39 * x)

●

●

●

●

●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

−
20

0
20

40
60

80

x

x^
3 

−
 1

3 
* 

x^
2 

+
 3

9 
* 

x



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Basic plot (II)

You can increase the size of the symbols on the axes and the axis
labels (cex stands for character expansion factor):

> plot(x, x^3 - 13 * x^2 + 39 * x,cex.axis=1.5,cex.lab=1.5)

●

●

●

●

●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

−
20

0
20

40
60

80

x

x^
3 

−
 1

3 
* 

x^
2 

+
 3

9 
* 

x



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Enhancing a plot (I)

• Change the type of plot via the argument type: "p" for points
(is default), "l" for lines, etc. See ?plot for other options
• Change the titles for the axes via xlab and ylab

• Add an overall title for the plot via main

> plot(x,x^3-13*x^2+39*x,type="l",xlab="time (hours)",

ylab="temperature",main="Enhanced plot",cex.axis=1.5,cex.lab=1.5)

0 2 4 6 8 10

−
20

0
20

40
60

80

Enhanced plot

time (hours)

te
m

pe
ra

tu
re



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Enhancing a plot (II)

• Change the plot symbol used from the default o via the
argument pch
• Change the colour via the argument col. By name: see
colors() for the 657 options. By number: see palette()

> plot(x,x^3-13*x^2+39*x,pch=18,xlab="time (hours)",

ylab="temperature",col="red",main="Enhanced plot",

cex.axis=1.5,cex.lab=1.5)

0 2 4 6 8 10

−
20

0
20

40
60

80

Enhanced plot

time (hours)

te
m

pe
ra

tu
re



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Plot symbols
There are 25 different plot symbols, see ?points

> plot(1:25, pch=1:25,cex=2,bg="grey")

# bg: background colors for open plot symbols

●

●

●

●

●
●

●

5 10 15 20 25

5
10

15
20

25

Index

1:
25



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Enhancing a plot (III)
You can add points, arrows, text, lines, and a legend to an existing
plot:

> x<-(0:100)/10

> plot(x,x^3-13*x^2+39*x,type="l",xlab=

"time (hours)",ylab="temperature",cex.axis=1.5,cex.lab=1.5)

> points(2,34,col="red",pch=16,cex=2)

> arrows(4,50,2.2,34.5)

> text(4.15,50,"local maximum",adj=0,col="blue",cex=1.5)

> lines(x,30-50*sin(x/2),col="blue")

> legend(x=0,y=80,legend=c("Sahara","Gobi"),col=c("black","blue"),

cex=1.5)

0 2 4 6 8 10

−
20

0
20

40
60

80

time (hours)

te
m

pe
ra

tu
re

●

local maximum

Sahara
Gobi



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Graphical parameters (I)

You can change the default value of many graphical parameters via
par (see ?par). For example to reset the background of a plot to
green:

> par(bg="green")

and then rerun the plot commands
0 2 4 6 8 10

−
20

0
20

40
60

80

time (hours)

te
m

pe
ra

tu
re

●

local maximum

Sahara
Gobi

You can set a parameter back to its default value (white) by
par(bg="white")



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Graphical parameters (II)

Other often used options:

• lwd sets the line width

• mfrow and mfcol enable multiple plots in one figure

• las to rotate axis symbols

• mar to change the default margins of the figure

> x<-(0:100)/10

> plot(x,x^3-13*x^2+39*x,type="l",

xlab= "time (hours)",ylab="temperature",

lwd=3,las=1,cex.axis=1.5,cex.lab=1.5)

0 2 4 6 8 10

−20

0

20

40

60

80

time (hours)

te
m

pe
ra

tu
re



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Histograms

Use hist for plotting histograms. As always, see ?hist for the
many arguments of this function

> hist(titanic3$age,breaks=15,freq=FALSE,

cex.axis=1.5,cex.lab=1.5)

Histogram of titanic3$age

titanic3$age

D
en

si
ty

0 20 40 60 80

0.
00

0.
01

0.
02

0.
03



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Boxplot

The function boxplot can be used on a vector

> boxplot(titanic3$fare,

ylim=c(0,300),ylab="fare",

cex.axis=1.5,cex.lab=1.5)

●

●●●●

●

●●

●

●

●●

●●

●
●

●●

●

●

●

●

●

●●●●

●●

●

●

●●

●

●●●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●●●●●●

●●

●●

●

●

●●

●●

●●●
●●
●
●

●●

●

●●

●

●●

●

●

●

●

●

●
●●
●●●

●●●
●

●

●●

●●

●

●

●

●

●

●
●

●●●●●

●

●

●●

●●●

●●

●●

●●

●●●

●●●

●
●●●●

●

●●●

●●●

●●

●●●●●●●
●●●●●●●●●●●

0
50

10
0

15
0

20
0

25
0

30
0

fa
re

boxplot also has a formula interface

> boxplot(fare ~ pclass,

data=titanic3,ylim=c(0,300),ylab="fare",

cex.axis=1.5,cex.lab=1.5)

●●

●●

●

●●

●

●

●●●●●●

●

●●●●●

●●●

●●●●

●●●●

●

●●●●●●●●●●●●●●

●●●

●●●●●

●●●●●●●●

●●●●●

●●●●●●

●●●●●●

●

●●●●●●●●●●●

●●●●●●

1st 2nd 3rd
0

50
10

0
15

0
20

0
25

0
30

0

fa
re



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Advanced R graphics

• Ch 12 of “An Introduction to R” gives an introduction to base
graphics

• lattice: very powerful for multipanel conditioning
needs to be loaded first; xyplot is the main function

• ggplot2: based on “the grammar of graphics”

• ggvis, plotly, rCharts, Shiny: interactive visualizations

• and in many more packages (gplots, plotrix, . . . )



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Advanced R graphics

• Ch 12 of “An Introduction to R” gives an introduction to base
graphics

• lattice: very powerful for multipanel conditioning
needs to be loaded first; xyplot is the main function

• ggplot2: based on “the grammar of graphics”

• ggvis, plotly, rCharts, Shiny: interactive visualizations

• and in many more packages (gplots, plotrix, . . . )



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Export: two types of formats

• Vector format (pdf, eps, wmf, emf)
• digital image consisting of independent geometric objects

(segments, polygons, curves, etc.)
• can be enlarged without losing resolution

• Raster (png, jpeg, tiff).
• rectangular grid of pixels, possibly with color
• Resolution impaired if image is enlarged

• Graphics can be saved via the menu in the graphics/plots
window, or a specific graphics file type can be created directly
(pdf(...), win.metafile(...), png(...) and ending with
dev.off())



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Outline

Graphics
Basic graphics
Other types of graphics

Internal and external communication
The structure of R
Export to other formats

Data manipulation and inspection

Documentation and help

Model fitting; formulas

Programming and ply functions
Programming constructs
The apply family



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Structure of R

• Objects: data, functions (statistical procedures), model output

• Environment: a collection of objects that is accessible in R
session
• Objects we create: in “Workspace” (RStudio: in Global

Environment window)
• Packages with existing functions: base, stats, graphics
• When a package is loaded, a new environment is created
• Some more environments, e.g. some tools in RStudio

• search() shows the environments in the search path
ls() or objects() shows the objects in an environment

• Hierarchical structure of environments; needed for dealing
with duplicate names



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Structure of R

• Objects: data, functions (statistical procedures), model output
• Environment: a collection of objects that is accessible in R

session
• Objects we create: in “Workspace” (RStudio: in Global

Environment window)
• Packages with existing functions: base, stats, graphics
• When a package is loaded, a new environment is created
• Some more environments, e.g. some tools in RStudio

• search() shows the environments in the search path
ls() or objects() shows the objects in an environment

• Hierarchical structure of environments; needed for dealing
with duplicate names



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Structure of R

• Objects: data, functions (statistical procedures), model output
• Environment: a collection of objects that is accessible in R

session
• Objects we create: in “Workspace” (RStudio: in Global

Environment window)
• Packages with existing functions: base, stats, graphics
• When a package is loaded, a new environment is created
• Some more environments, e.g. some tools in RStudio

• search() shows the environments in the search path
ls() or objects() shows the objects in an environment

• Hierarchical structure of environments; needed for dealing
with duplicate names



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Structure of R

• Objects: data, functions (statistical procedures), model output
• Environment: a collection of objects that is accessible in R

session
• Objects we create: in “Workspace” (RStudio: in Global

Environment window)
• Packages with existing functions: base, stats, graphics
• When a package is loaded, a new environment is created
• Some more environments, e.g. some tools in RStudio

• search() shows the environments in the search path
ls() or objects() shows the objects in an environment

• Hierarchical structure of environments; needed for dealing
with duplicate names



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

R resembles operating system

R OS

objects files
Workspace current folder
environments folders in “path” variable
RStudio “Environment” window Explorer window



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Workspace management; connection with OS

• Save complete Workspace on disk
• R: File → Save Workspace (or the save.image function)
• RStudio: Floppy disk icon in the Global Environment window
• Asked when you close the R session (e.g. via command: q())

• Save specific objects: via save function

• Binary format file with extension: “.RData”

• load can import R workspace or collection of R objects
• Delete objects from workspace within R via rm function

> rm(titanic3)

Remove all objects from workspace:

> rm(list=ls())



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Workspace management; connection with OS

• Save complete Workspace on disk
• R: File → Save Workspace (or the save.image function)
• RStudio: Floppy disk icon in the Global Environment window
• Asked when you close the R session (e.g. via command: q())

• Save specific objects: via save function

• Binary format file with extension: “.RData”

• load can import R workspace or collection of R objects
• Delete objects from workspace within R via rm function

> rm(titanic3)

Remove all objects from workspace:

> rm(list=ls())



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Project management

• Every project (analysis) in separate folder (working directory)

• Users can have several working directories with separate
.RData files and script files

• R best started via double clicking on script file with “.R”
extension. Working directory is that same folder

• Otherwise, use commands getwd and setwd or the GUI to get
and set the working directory
Note: R uses / or \\ instead of \ in path specification

• RStudio has an elegant Project concept
https://support.posit.co/hc/en-us/articles/

200526207-Using-Projects

/
https://support.posit.co/hc/en-us/articles/200526207-Using-Projects
https://support.posit.co/hc/en-us/articles/200526207-Using-Projects


Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Project management

• Every project (analysis) in separate folder (working directory)

• Users can have several working directories with separate
.RData files and script files

• R best started via double clicking on script file with “.R”
extension. Working directory is that same folder

• Otherwise, use commands getwd and setwd or the GUI to get
and set the working directory
Note: R uses / or \\ instead of \ in path specification

• RStudio has an elegant Project concept
https://support.posit.co/hc/en-us/articles/

200526207-Using-Projects

/
https://support.posit.co/hc/en-us/articles/200526207-Using-Projects
https://support.posit.co/hc/en-us/articles/200526207-Using-Projects


Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Project management

• Every project (analysis) in separate folder (working directory)

• Users can have several working directories with separate
.RData files and script files

• R best started via double clicking on script file with “.R”
extension. Working directory is that same folder

• Otherwise, use commands getwd and setwd or the GUI to get
and set the working directory
Note: R uses / or \\ instead of \ in path specification

• RStudio has an elegant Project concept
https://support.posit.co/hc/en-us/articles/

200526207-Using-Projects

/
https://support.posit.co/hc/en-us/articles/200526207-Using-Projects
https://support.posit.co/hc/en-us/articles/200526207-Using-Projects


Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Export tables to other formats

• Copy and paste

• Use write.table

• Function write.xlsx in package xlsx for Excel

• HTML output: packages kableExtra, xtable, R2HTML and
PrettyR

• Many options for LATEX users, e.g. Hmisc, xtable



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Export tables to other formats

• Copy and paste

• Use write.table

• Function write.xlsx in package xlsx for Excel

• HTML output: packages kableExtra, xtable, R2HTML and
PrettyR

• Many options for LATEX users, e.g. Hmisc, xtable



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Reproducible research

• See Task View at
http://cran.r-project.org/web/views/

ReproducibleResearch.html

• Most elegant approach: both R code and explanatory text in
same file

• Compilation: run R code, and keep the surrounding text

• Recommended: use Markdown format in Rstudio
Compilation via knitr package

• https://statmodeling.stat.columbia.edu/2014/09/

19/never-happened-r-markdown//

http://cran.r-project.org/web/views/ReproducibleResearch.html
http://cran.r-project.org/web/views/ReproducibleResearch.html
https://statmodeling.stat.columbia.edu/2014/09/19/never-happened-r-markdown//
https://statmodeling.stat.columbia.edu/2014/09/19/never-happened-r-markdown//


Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Reproducible research

• See Task View at
http://cran.r-project.org/web/views/

ReproducibleResearch.html

• Most elegant approach: both R code and explanatory text in
same file

• Compilation: run R code, and keep the surrounding text

• Recommended: use Markdown format in Rstudio
Compilation via knitr package

• https://statmodeling.stat.columbia.edu/2014/09/

19/never-happened-r-markdown//

http://cran.r-project.org/web/views/ReproducibleResearch.html
http://cran.r-project.org/web/views/ReproducibleResearch.html
https://statmodeling.stat.columbia.edu/2014/09/19/never-happened-r-markdown//
https://statmodeling.stat.columbia.edu/2014/09/19/never-happened-r-markdown//


Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Outline

Graphics
Basic graphics
Other types of graphics

Internal and external communication
The structure of R
Export to other formats

Data manipulation and inspection

Documentation and help

Model fitting; formulas

Programming and ply functions
Programming constructs
The apply family



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Some functions for data management

• Sorting. Base R: sort and order. dplyr: arrange.
Rstudio: sorting in spreadsheet window (not saved in object)

• Merging. R: merge. dplyr: left_join (3 other options, see
Data Transformation Cheat Sheet).

• Long to wide. R: reshape. tidyr: pivot_wider

Wide to long. Base R: reshape. tidyr: pivot_longer



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Some functions for data management

• Sorting. Base R: sort and order. dplyr: arrange.
Rstudio: sorting in spreadsheet window (not saved in object)

• Merging. R: merge. dplyr: left_join (3 other options, see
Data Transformation Cheat Sheet).

• Long to wide. R: reshape. tidyr: pivot_wider

Wide to long. Base R: reshape. tidyr: pivot_longer



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Some functions for data management

• Sorting. Base R: sort and order. dplyr: arrange.
Rstudio: sorting in spreadsheet window (not saved in object)

• Merging. R: merge. dplyr: left_join (3 other options, see
Data Transformation Cheat Sheet).

• Long to wide. R: reshape. tidyr: pivot_wider

Wide to long. Base R: reshape. tidyr: pivot_longer



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Creating transformed variables

• Arithmetic functions: log etc.

• cut to split continuous variable into groups

• Note: transformations not needed for model fitting

• Adding variables
• Base R: via $

Functions within and transform may be helpful
• dplyr: mutate



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Creating transformed variables

• Arithmetic functions: log etc.

• cut to split continuous variable into groups

• Note: transformations not needed for model fitting
• Adding variables

• Base R: via $

Functions within and transform may be helpful
• dplyr: mutate



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Making basic summaries

• Data summary: summary

• Contingency tables: table, xtabs
CrossTable in descr package
• Summary by subgroups

• Base R: aggregate, tapply
• Several functions in packages doBy, Hmisc, compareGroups,

dplyr

• Graphical summary of data frames: dfSummary in package
summarytools



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Making basic summaries

• Data summary: summary

• Contingency tables: table, xtabs
CrossTable in descr package

• Summary by subgroups
• Base R: aggregate, tapply
• Several functions in packages doBy, Hmisc, compareGroups,

dplyr

• Graphical summary of data frames: dfSummary in package
summarytools



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Making basic summaries

• Data summary: summary

• Contingency tables: table, xtabs
CrossTable in descr package
• Summary by subgroups

• Base R: aggregate, tapply
• Several functions in packages doBy, Hmisc, compareGroups,

dplyr

• Graphical summary of data frames: dfSummary in package
summarytools



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Making basic summaries

• Data summary: summary

• Contingency tables: table, xtabs
CrossTable in descr package
• Summary by subgroups

• Base R: aggregate, tapply
• Several functions in packages doBy, Hmisc, compareGroups,

dplyr

• Graphical summary of data frames: dfSummary in package
summarytools



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Outline

Graphics
Basic graphics
Other types of graphics

Internal and external communication
The structure of R
Export to other formats

Data manipulation and inspection

Documentation and help

Model fitting; formulas

Programming and ply functions
Programming constructs
The apply family



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Finding Information

• Function help. R is object oriented!

• Function help.search

• Function RSiteSearch

Opens web browser with all keyword specific info on functions
from CRAN

• Package sos

• Manuals in R

• CRAN (Task Views, Vignettes, list with packages)

• http://stackoverflow.com/questions/tagged/r

• And of course ChatGPT (or similar modern AI-based
chatbots)

• Have a look at the links provided at the end of the handout or
at https:
//bioinformaticslaboratory.eu/gs-computing-in-r/

http://stackoverflow.com/questions/tagged/r
https://bioinformaticslaboratory.eu/gs-computing-in-r/
https://bioinformaticslaboratory.eu/gs-computing-in-r/


Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Finding Information

• Function help. R is object oriented!

• Function help.search

• Function RSiteSearch

Opens web browser with all keyword specific info on functions
from CRAN

• Package sos

• Manuals in R

• CRAN (Task Views, Vignettes, list with packages)

• http://stackoverflow.com/questions/tagged/r

• And of course ChatGPT (or similar modern AI-based
chatbots)

• Have a look at the links provided at the end of the handout or
at https:
//bioinformaticslaboratory.eu/gs-computing-in-r/

http://stackoverflow.com/questions/tagged/r
https://bioinformaticslaboratory.eu/gs-computing-in-r/
https://bioinformaticslaboratory.eu/gs-computing-in-r/


Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Finding Information

• Function help. R is object oriented!

• Function help.search

• Function RSiteSearch

Opens web browser with all keyword specific info on functions
from CRAN

• Package sos

• Manuals in R

• CRAN (Task Views, Vignettes, list with packages)

• http://stackoverflow.com/questions/tagged/r

• And of course ChatGPT (or similar modern AI-based
chatbots)

• Have a look at the links provided at the end of the handout or
at https:
//bioinformaticslaboratory.eu/gs-computing-in-r/

http://stackoverflow.com/questions/tagged/r
https://bioinformaticslaboratory.eu/gs-computing-in-r/
https://bioinformaticslaboratory.eu/gs-computing-in-r/


Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Outline

Graphics
Basic graphics
Other types of graphics

Internal and external communication
The structure of R
Export to other formats

Data manipulation and inspection

Documentation and help

Model fitting; formulas

Programming and ply functions
Programming constructs
The apply family



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Regression; Formulas

The regression equation is represented as a formula

General form dependent ∼ independent

Dependent Depends on type of model, check help file of modeling
function

Independent Variable names separated by operators, without
explicit reference to parameters

fare ∼ age + pclass + sex three main effects

I interactions are denoted by “:”
interaction and main effects by “∗”

age ∗ sex = age + sex + age : sex

I formulas may involve existing functions:
log(fare), I(age+dob), sqrt(age), cut(age,breaks=3)



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Regression; Formulas

The regression equation is represented as a formula

General form dependent ∼ independent

Dependent Depends on type of model, check help file of modeling
function

Independent Variable names separated by operators, without
explicit reference to parameters

fare ∼ age + pclass + sex three main effects

I interactions are denoted by “:”
interaction and main effects by “∗”

age ∗ sex = age + sex + age : sex

I formulas may involve existing functions:
log(fare), I(age+dob), sqrt(age), cut(age,breaks=3)



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Regression; Formulas

The regression equation is represented as a formula

General form dependent ∼ independent

Dependent Depends on type of model, check help file of modeling
function

Independent Variable names separated by operators, without
explicit reference to parameters

fare ∼ age + pclass + sex three main effects

I interactions are denoted by “:”
interaction and main effects by “∗”

age ∗ sex = age + sex + age : sex

I formulas may involve existing functions:
log(fare), I(age+dob), sqrt(age), cut(age,breaks=3)



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Model output

Output model stored in a list. Results observed via functions

print Short summary of model outcome; typing name is
sufficient

summary Longer summary of model description

coef Parameter values

confint Confidence intervals

anova Sequential anova table or compare two models

fitted Calculates fitted values for records in model

predict Calculates predicted values for certain values of
covariates

update Used to refit the model with small changes



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Model output

Output model stored in a list. Results observed via functions

print Short summary of model outcome; typing name is
sufficient

summary Longer summary of model description

coef Parameter values

confint Confidence intervals

anova Sequential anova table or compare two models

fitted Calculates fitted values for records in model

predict Calculates predicted values for certain values of
covariates

update Used to refit the model with small changes



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Model output

Output model stored in a list. Results observed via functions

print Short summary of model outcome; typing name is
sufficient

summary Longer summary of model description

coef Parameter values

confint Confidence intervals

anova Sequential anova table or compare two models

fitted Calculates fitted values for records in model

predict Calculates predicted values for certain values of
covariates

update Used to refit the model with small changes



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Formula structure

Same formula structure in other types of analysis
• graphics

> plot(age ~ fare, data=titanic3)

• summaries (xtabs)

• packages (doBy, Hmisc, compareGroups)

• and many many more



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Outline

Graphics
Basic graphics
Other types of graphics

Internal and external communication
The structure of R
Export to other formats

Data manipulation and inspection

Documentation and help

Model fitting; formulas

Programming and ply functions
Programming constructs
The apply family



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Statements: if-else

• R also has a conditional construct: depending on the outcome
of a test, execute one or another statement

if (logical statement){

do this

} else {

do that

}

> x <- 10

> z <- if (x < 2) 4 else 3

> z

[1] 3



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Statements: repetition (I)

• Let us look at a simple example using matrix A

sample1 sample2 sample3 sample4 sample5

gene1 1 3 5 7 9

gene2 2 4 6 8 10

> results <- numeric(2)

> results

1] 0 0

> for (i in 1:2) {

results[i] <- mean(A[i, ])

}

> results

[1] 5 6

• We iteratively calculated the mean of each row



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Statements: repetition (II)

Imagine that you have to repeat the same analysis for many files
that are all in the same folder on your computer. A short solution
using an iterative construct would be

> files <- dir()

> for (filename in files){

infile <- read.table(filename, ...)

do something with infile

}



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Apply

• Functions from the apply family are convenient shorthands
for repetitions

apply(X, MARGIN, FUN, ...)

Arguments

X an array, including a matrix

MARGIN for a matrix 1 indicates rows, 2 indicates columns

FUN the function to be applied

• Taking a row-wise mean can be handled using apply

> apply(A, 1, mean)

gene1 gene2

5 6



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

Other members of the apply family

• lapply: apply a function over a list or vector

• sapply: similar to lapply but more user-friendly if output
can be coerced into a vector

• tapply: can be used to split a vector in subgroups and apply
a function to each of the subgroups

• replicate: simpler version of sapply for the repeated
evaluation of an expression. Often used for random number
generation

• aggregate: extension of tapply for data frames that splits
the data into subgroups and computes summary statistics for
each of the subgroups.



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

tapply: example

• Let us again have a look at the Titanic data

> head(titanic3[,c("fare","pclass")])

fare pclass

1 211.3375 1st

2 151.5500 1st

3 151.5500 1st

4 151.5500 1st

5 151.5500 1st

6 26.5500 1st

• Now we can use tapply to calculate the mean fare per
passenger class

> with(titanic3, tapply(fare, pclass, mean, na.rm=TRUE))

1st 2nd 3rd

87.50899 21.17920 13.30289

• dplyr: group_by, summarize



Graphics Communication Data management Help Model fitting; formulas Programming and ply functions

THANKS!


	Day 1 and 2
	Introduction
	

	Basics
	

	Syntax: data
	Data structures
	Data import and export, external formats

	Functions; selections; special data types
	Functions
	Selections
	Some special data types


	Day 3 and 4
	Graphics
	Basic graphics
	Other types of graphics

	Internal and external communication
	The structure of R
	Export to other formats

	Data manipulation and inspection
	

	Documentation and help
	

	Model fitting; formulas
	

	Programming and ply functions
	Programming constructs
	The apply family



