
Introduction Basics Data Functions Extras

Introduction to R

Department of Epidemiology and Data Science

8 - 12 December 2025

Introduction Basics Data Functions Extras

Introduction Basics Data Functions Extras

Outline

Introduction

Basics

Data

Functions

Extras

Introduction Basics Data Functions Extras

Course setup

• Course aim: become familiar with the basics of R
• Four days, one morning session per day: 9:30–12:30
• Mix of interactive lectures and computer exercises
• Course website:

https://bioinformaticslaboratory.eu/gs-computing-in-r/
• You can download the script file CourseMain.R to execute the

R code used during the lectures
• Comments and suggestions for improvement are most welcome

https://bioinformaticslaboratory.eu/gs-computing-in-r/

Introduction Basics Data Functions Extras

R: What is it?

• According to R-project: “a language and environment for
statistical computing and graphics”

• Free “statistical” software package: no money and open source
• Runs on all major operating systems
• Standard installation contains basic operations and some more
• Extensions can be added via packages

• Recommended; come installed together with R
• Thousands more; can be installed from the R website

• Very powerful language; has become very popular over the last
two decades

http://www.r-project.org/about.html

Introduction Basics Data Functions Extras

R: What does it look like?

• Basic R: http://cran.r-project.org/bin/windows or
http://cran.r-project.org/bin/macosx

• Rstudio (commonly used):
http://www.rstudio.com/products/rstudio/download/

http://cran.r-project.org/bin/windows
http://cran.r-project.org/bin/macosx
http://www.rstudio.com/products/rstudio/download/

Introduction Basics Data Functions Extras

R: Basic R

Introduction Basics Data Functions Extras

R: Rstudio

Introduction Basics Data Functions Extras

R: How to work with it?

How to execute a task in R?

• with a GUI (very limited)
• via commands in the console (simple tasks)
• via scripts (file with “.R”-extension)

Introduction Basics Data Functions Extras

Outline

Introduction

Basics

Data

Functions

Extras

Introduction Basics Data Functions Extras

The R console (I)

• First of all, the R console can be used as a pocket calculator

• Many mathematical operations are pre-defined in R

> 2 + 7

[1] 9

> sqrt(2)

[1] 1.414214

> cos(pi)

[1] -1

> log10(10ˆ3)

[1] 3

Introduction Basics Data Functions Extras

The R console (II)

• Use up/down keys to go back/forth on the command history.

• Use CTRL+A or HOME to go to the start of a line

• Use CTRL+E or END to go to the end of a line

• Use TAB to complete pre-defined words and file names

• If for some reason R gets stuck try ESC (Windows) or
CTRL+C (Mac, Linux)

Introduction Basics Data Functions Extras

The R console (III)

• We can also store values in a variable

> x <- 2
> x

[1] 2

• The left arrow <- denotes an assignment statement. This
stores a value in object x, that can then be used later on.

• Remember: without assignment, it’s lost

> xˆ2

[1] 4

Introduction Basics Data Functions Extras

The Environment/History-window
• In Rstudio, you can see the stored variables in the

Environment/History-window

Introduction Basics Data Functions Extras

The Files/Plots/Packages/Help-window

Introduction Basics Data Functions Extras

The Files/Plots/Packages/Help-window

Lots of helpful information can be found in this window

• Files - The Files panel gives you access to the file directory
on your hard drive

• Plots - The Plots panel shows all your plots

• Packages - The Packages panel shows a list of all the installed
R packages

• Help - Help menu for R functions

Introduction Basics Data Functions Extras

Help (I)

If you want to know more about an operator or function just use
help (or ?)

> help(sqrt)

MathFun package:base
Description:
sqrt(x) computes the (principal) square root of x.
Usage:
sqrt(x)

Introduction Basics Data Functions Extras

Help (II)
help(mean)

Description: Generic function for the (trimmed)
arithmetic mean Usage: mean(x, ...)
Default S3 method: mean.default(x, trim = 0, na.rm =
FALSE, ...)

Arguments:
x: An R object. Currently there are methods for
numeric/logical vectors and date, date-time and time
interval objects. Complex vectors are allowed for
trim = 0 only.

Value
If trim is zero (the default), the arithmetic mean of
the values inxis computed, as a numeric or complex
vector...

Introduction Basics Data Functions Extras

Help (III)

Outline of a help page is always the same:

• Description: what does the function do

• Usage: what arguments does the function expect

• Arguments: description of the individual arguments

• Value: what is the result of a function call

• Details, references, See Also

• Example: example(mean)

Introduction Basics Data Functions Extras

Functions

• help(), mean(), sqrt(), log10(), cos() are all examples of
a function

• The basic R distribution consists of a large collection of
functions

• Functions generate some output given some input
• The inputs are specified via arguments of the function between

parentheses ():
name_of_function(argument_1)

• help(sqrt): sqrt is argument of function help
• The output of a function can be a value written to the Console

or assigned to an object, a figure, a help page, . . .

Introduction Basics Data Functions Extras

Packages

• Functions in R are in general part of a package, such as the
base package for sqrt()

• Only the standard packages are loaded when you start R: base,
graphics, stats, utils, ...

• Other packages are added to your R by installing it from
CRAN: install.packages("name") and subsequently by
loading it (every time you open R): library("name")

• library() shows all installed packages
• help(package=stats) gives help on all functions defined in

the package stats

https://cran.r-project.org/

Introduction Basics Data Functions Extras

Outline

Introduction

Basics

Data

Functions

Extras

Introduction Basics Data Functions Extras

Object types

R has several object types:

• scalar

• vector

• matrix

• data frame

• list

Introduction Basics Data Functions Extras

Modes

• Each object has a specific atomic mode, the most common
ones are:

• numeric: stores numbers: 1.2, 3.4
• logical: stores Boolean values: TRUE, FALSE
• character: stores text, enclosed in ""

• You can change the mode of an object

> as.character(x)

[1] "2"

• Some objects can have more than one mode

Introduction Basics Data Functions Extras

Scalars

• The simplest object type is a scalar.

• A scalar object is just a single value like a number (numeric),
a letter or a name (character)

> a <- 100
> b <- 20
> c <- a / b
> c

[1] 5

> d <- "Hello"
> e <- "The R computing course"

Introduction Basics Data Functions Extras

Vectors (I)

• A vector is one of the basic data structures in R

• It is just a combination of several scalars stored as a single
object.

> x1 <- c(10, 9, 8, 7, 6, 5, 4, 3, 2, 1)
> x1

[1] 10 9 8 7 6 5 4 3 2 1

• These commands also give a vector of the numbers 10 to 1:

> x2 <- seq(from = 10, to = 1, by = -1)
> x3 <- seq(10, 1)
> x4 <- 10:1

• c() (short for concatenate) and seq() are functions as well

Introduction Basics Data Functions Extras

Vectors (II)

• Vectors can be indexed using square brackets []:

> x1[5]

[1] 6

• Negative indices exclude elements from a vector:

> x1[-5]

[1] 10 9 8 7 5 4 3 2 1

• Indices can be used to replace an element of a vector

> x1[4] <- 12
> x1

[1] 10 9 8 12 6 5 4 3 2 1

Introduction Basics Data Functions Extras

Vectors (III)

• Functions can be applied to vectors:

> mean(x1)

[1] 6

• Many calculations are vectorized:

> x1 + 1

[1] 11 10 9 13 7 6 5 4 3 2

> 2 * x1

[1] 20 18 16 24 12 10 8 6 4 2

Introduction Basics Data Functions Extras

Matrices (I)

• From one (vector) to two dimensions (matrix):

help(matrix)

matrix package: base

...

Usage:

matrix(data = NA, nrow = 1, ncol = 1, byrow =
FALSE,

dimnames = NULL)

• Note: arguments to a function can be supplied by name or by
position

Introduction Basics Data Functions Extras

Matrices (II)
• Matrices store data in a table-like structure, with rows and

columns:

> A <- matrix(data = 1:10, nrow = 2, ncol = 5)
> A <- matrix(1:10, 2, 5)
> A

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

• Indexing is simple (elements):

> A[2, 3]

[1] 6

• Indices can be used to replace an element of a matrix

> A[2, 3] <- 12

Introduction Basics Data Functions Extras

Matrices (III)
• Selecting entire row(s)

> A[1,] # Same as A[1,1:5]

[1] 1 3 5 7 9

• Selecting entire column(s)

> A[, c(1, 5)] # Same as A[1:2, c(1,5)]

[,1] [,2]
[1,] 1 9
[2,] 2 10

• Functions can be applied to matrices:

> dim(A[, c(1, 5)])

[1] 2 2

Introduction Basics Data Functions Extras

Data frames (I)
• An alternative of a matrix is a data.frame

• Commonly, rows correspond to individuals and columns to
variables

• All elements within a column should be of the same mode

• External data (for example, tab-limited) imported via
read.table is of class data.frame:

data.frame

package: base

Description:

The function data.frame() creates data frames,
tightly coupled collections of variables which
share many of the properties of matrices and of
lists, used as the fundamental data structure by
most of R's modeling software.

Introduction Basics Data Functions Extras

Data frames (II)

> pclass <- c("1st", "2nd", "1st")
> survived <- c(1, 1, 0)
> name <- c("Elisabeth Walton", "Hudson Trevor", "Helen Loraine")
> age <- c(29.0, 0.9167, 2.0)
> titanic <- data.frame(pclass, survived, name, age)
> titanic

pclass survived name age
1 1st 1 Elisabeth Walton 29.0000
2 2nd 1 Hudson Trevor 0.9167
3 1st 0 Helen Loraine 2.0000

Introduction Basics Data Functions Extras

Data frames (III)

• Data frames can be indexed like a matrix

> titanic[c(2, 3), c("name", "age")]

name age
2 Hudson Trevor 0.9167
3 Helen Loraine 2.0000

• Columns of a data frame can also be indexed with $ and [[]]

> titanic$age # titanic[['age']] gives the same result

[1] 29.0000 0.9167 2.0000

Introduction Basics Data Functions Extras

Data frames (IV)

For large data frames, several useful functions exist to get a more
compact overview

• dim() gives the number of rows and columns

• head() shows the first six rows of a data frame

> dim(titanic)

[1] 3 4

Introduction Basics Data Functions Extras

Data frames (V)

For large data frames, several useful functions exist to get a more
compact overview

• tail similar to head but shows the last 6 rows

• str shows the internal structure of an R object

> str(titanic)

'data.frame': 3 obs. of 4 variables:
$ pclass : chr "1st" "2nd" "1st"
$ survived: num 1 1 0
$ name : chr "Elisabeth Walton" "Hudson Trevor" "Helen Loraine"
$ age : num 29 0.917 2

• View opens a spreadsheet-style data viewer. In RStudio click
on the name of an object in the Environment tab

Introduction Basics Data Functions Extras

Lists (I)

• Also lists can combine different modes, for example character
and numeric:

> c("gene1", 5)

[1] "gene1" "5"

> mylist <- list(gene = "gene1", number = 5)
> mylist$gene

[1] "gene1"

> mylist$number

[1] 5

• In the example above, gene and number are called components

Introduction Basics Data Functions Extras

Lists (II)

• Lists can be indexed in various ways:
• As vectors, with square brackets. This returns a list:

> x <- list(gene = "gene1", number = 5)
> x[1]
$gene
[1] "gene1"

• With double square brackets. This extracts a component:
> x[[1]]
[1] "gene1"

• Or equivalently, by name using the $ operator (if the list is
named):
> x$gene
[1] "gene1"

Introduction Basics Data Functions Extras

Objects (I)

• You can get an overview of all objects you created via ls
(short for list), or in the Environment Window

> ls()

[1] "a" "A" "age" "b" "c" "d"
[7] "e" "mylist" "name" "pclass" "survived" "titanic"

[13] "x" "x1" "x2" "x3" "x4"

• Many R functions can be used on any object type. For example:

> summary(x1)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 3.25 5.50 6.00 8.75 12.00

• Try summary(A)

Introduction Basics Data Functions Extras

Objects (II)

• An object can have almost any name you choose: patients,
Data, abc, sorted.results_file

• However, there are some rules:
• No space
• No special characters such as @,$,+ etc. (_ and . are allowed)
• Numbers allowed but not as first character
• Some names are not allowed (reserved for programming

constructs): for, if, while, . . .
• Avoid names that are functions in R: sort, c, mean, t,

data, q
• Names are case-sensitive: Data is not the same as data

Introduction Basics Data Functions Extras

Indexing with Booleans (I)
• Booleans (TRUE, FALSE) can also be used as an index:

> x1

[1] 10 9 8 12 6 5 4 3 2 1

> x1[c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE)]

[1] 10 8 6 4 2

• Making Booleans by comparing numbers:
• Less/greater: <, >, <=, >=
• Exact equality: ==
• Not equal to: !=

> x1[x1 > 5]

[1] 10 9 8 12 6

Introduction Basics Data Functions Extras

Indexing with Booleans (II)

• %in%: used to test which values are part of a set of specified
values

> c(3, 5, 6) %in% x1

[1] TRUE TRUE TRUE

• Booleans are converted to integers if a numeric value is
required: TRUE equals 1, FALSE equals 0

Introduction Basics Data Functions Extras

Indexing with Booleans (III)

You can calculate with Booleans. Main operators are: - &: AND -
all must be true - |: OR - at least one must be true - !: NOT -
negation

> TRUE & FALSE

[1] FALSE

> TRUE | FALSE

[1] TRUE

> x1 > 5 & x1 < 8

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Introduction Basics Data Functions Extras

Indexing with names (I)

• A useful concept in R is access by names:

> m <- c(1, 2, 3, 4)
> names(m) <- c("gene1", "gene2", "gene3", "gene4")
> m

gene1 gene2 gene3 gene4
1 2 3 4

• We can also give names to rows and columns of matrix A:

> rownames(A) <- c("gene1", "gene2")
> colnames(A) <- c(
+ "sample1", "sample2", "sample3",
+ "sample4", "sample5"
+)

Introduction Basics Data Functions Extras

Indexing with names (II)

• We can now index by name instead of by number or Boolean:

> A

sample1 sample2 sample3 sample4 sample5
gene1 1 3 5 7 9
gene2 2 4 12 8 10

> A["gene1",]

sample1 sample2 sample3 sample4 sample5
1 3 5 7 9

• Indexing by name rather than by number makes code more
readable: Data["BRCA1",] instead of Data[4137,]

Introduction Basics Data Functions Extras

Recapitulation

You have now seen the most important data objects in R:

• vectors

• matrices are a two-dimensional extension of vectors

• lists are a general form of vectors in which the various elements
need not be of the same mode

• data frames are matrix-like structures, in which the columns
can be of different modes

• Indexing of these objects can be done by number, by name,
and using Booleans.

Introduction Basics Data Functions Extras

Outline

Introduction

Basics

Data

Functions

Extras

Introduction Basics Data Functions Extras

Functions: basic format

• All actions are performed via functions
• “Basic” functions: sqrt(), mean(), help(), library()
• Functions for analysis: t.test(), lm(), plot()

• Input: required and optional arguments; within parentheses
(sqrt(2), help(seq)), separated by comma

• required: need to be supplied
• optional: have default values

• Beware of sequence of arguments; required ones come first
e.g. log(x, base = exp(1)), x required, base optional.

• Argument names can be abbreviated if no risk of ambiguity.

Introduction Basics Data Functions Extras

Functions: basic format

• Special “argument” ...: anything that makes sense, e.g. in
c() and paste() function

• Output: result of calculations (typically assigned to R object),
graphics, help window, . . .

• You can use functions within other functions,
e.g. mean(c(3,6,8))

Introduction Basics Data Functions Extras

Functions: the inside

• Function code can be seen by leaving out the parentheses ()

• General structure: function(args) SOME R CODE with SOME
R CODE a collection of other functions as compound expression

• Compound expressions are placed within “{” and “}”:

> z <- {
+ x <- 2
+ y <- x + 2
+ }
> z

[1] 4

• A compound expression returns the last value

Introduction Basics Data Functions Extras

Functions and packages
• You can write your own functions:

> good.morning <- function(work) {
+ if (work == TRUE) {
+ cat("wake up")
+ } else {
+ cat("you can stay in bed")
+ }
+ }

Note: the function is saved in the object good.morning

• You can add it to a package, i.e., a collection of functions (and
data): survival, ggplot2, Rcmdr, sudoku, scuba,
engsoccerdata

See http://cran.r-project.org/web/packages

• R Reference Card 2.0 for overview of most important functions

http://cran.r-project.org/web/packages

Introduction Basics Data Functions Extras

Outline

Introduction

Basics

Data

Functions

Extras

Introduction Basics Data Functions Extras

Selection of rows and columns

• Index: [] (vector) or [row, col] (data frame)
• By character: titanic3[, "sex"]

• By number: titanic3[, 4]

• By logical: titanic3[titanic3[,"sex"] != 2,]

• Columns in data frame can also be selected via $
e.g. titanic3$sex

• We can assign values to selections or new columns

> titanic3[3,"age"] <- 23.4

> my.data$bmi <-
my.data$weight/(my.data$height)ˆ2

Introduction Basics Data Functions Extras

Selection of rows via functions

• Via special functions: head(), tail(), subset()

subset(my.data, ...)with ... a logical condition

> subset(titanic3, pclass %in% c(1, 2))

(remember that %in% is a Boolean construct)

• Many functions have subset argument, often combined with a
formula structure

> xtabs(~survived, data=titanic3,
subset=(sex==2)))

Introduction Basics Data Functions Extras

Selection of columns via functions
• Via with() function:

> table(titanic3$sex, titanic3$survived)

> with(titanic3, table(sex, survived))

• Many functions have a data argument, combined with formula
structure

> xtabs(~sex+survived, data=titanic3)

• Via select argument of subset function

• Don’t use $ for column selection if function has a data
argument

Don’t write:

> xtabs(~titanic3$sex + titanic3$survived,
data=titanic3)

Introduction Basics Data Functions Extras

Missing data

• Special value: NA (short for “not available”)

• The function is.na() checks for missingness

> table(is.na(titanic3$age))

FALSE TRUE

1046 263

• Within functions, missings are often excluded by default, but
not always

• quantile(), mean() give an error if there are missings; specify
argument na.rm=TRUE

• table excludes missings, include them via argument
useNA="always"

Introduction Basics Data Functions Extras

Factors (I)
• Categorical variable with “levels”

> DiseaseState <- factor(c(
+ "Cancer", "Cancer",
+ "Normal"
+))
> DiseaseState

[1] Cancer Cancer Normal
Levels: Cancer Normal

> levels(DiseaseState)

[1] "Cancer" "Normal"

• Ordering: default is alphabetical/numeric

• Internally represented as integers 1, 2, . . .

> as.numeric(DiseaseState)

[1] 1 1 2

Introduction Basics Data Functions Extras

Factors (II)

• By default, character columns are converted into factor if data
are read from other statistical programs. Numeric codings
(e.g. 1, 2, . . .) are not converted by default.

• Create or manipulate via factor() function
• Required argument x: vector with values
• Optional argument levels: vector of unique values in x;

sequence determines the ordering.
• Optional argument labels: labels are given to levels, default:

same as levels.

Introduction Basics Data Functions Extras

Factors (III)

> table(factor(DiseaseState,
+ levels = c("Normal", "Cancer")
+))

Normal Cancer
1 2

> table(factor(DiseaseState,
+ levels = c("Normal", "Cancer"),
+ labels = c("Control", "Disease")
+))

Control Disease
1 2

Introduction Basics Data Functions Extras

Factors (IV)

• Useful in statistical models

• Standard in R: first group is reference group, the choice of the
reference can be changed via relevel:

> relevel(DiseaseState, "Normal")

[1] Cancer Cancer Normal
Levels: Normal Cancer

Introduction Basics Data Functions Extras

Dates
• Numeric value (units since time origin) with character

representation

• Origin: SPSS: October 14, 1582 (in seconds);

R: January 1st, 1970 (in days);

STATA: January 1st, 1960 (in days

• SPSS files read into R via ‘read.spss“ in foreign package need
to be converted

> my.data$data <-
as.Date(my.data$date+ISOdate(1582,10,14))

The haven package makes the conversion automatically

• R is very flexible in conversion between textual date
representations

• as.Date: create data variable; format: change display format

	Introduction
	Basics
	Data
	Functions
	Extras

