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Introduction 
In this tutorial you will model the outbreak of an infection in a population using the SIR model.  
In part I of this tutorial we will introduce you to the ‘deSolve’ package, which you will use to 
solve differential equations. In Part II you will use the ‘deSolve’ and ‘FME’ package to 
implement and calculate the SIR infection model. In Appendix you find a nano-review about 
ordinary differential equations (ODEs). All documents can be found on our website.  
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Part I. Getting started with R and deSolve 
We will use R Studio and the deSolve package for the modelling. Therefore, we will assume 
that you are familiar with R and R studio. See the course website for installation instructions 
and documentation for R/Rstudio. If you are not familiar with R then just proceed and try to 
use the provided code as a ‘black box’. 
 
Installation of deSolve and FME 
For this computer lab you need two R packages: deSolve and FME. To install these packages, 
first start Rstudio. Next go to the menu ‘Tools’  ‘Install Packages’. From the popup menu 
you can install packages from CRAN. Search for the deSolve and FME package and install them 
on your computer.  
 
Introduction to deSolve 
Here we provide a short tutorial that explains how to setup and solve ordinary differential 
equations in R/deSolve. deSolve includes R functions that numerically solve (a) initial value 
problems of a system of first-order ordinary differential equations (ODEs), (b) partial 
differential equations (PDEs), (c) differential algebraic equations (DAEs; mixture of differential 
and algebraic equations) and (d) delay differential equations (DDEs). 
 
In this tutorial we focus on ODEs. deSolve was developed by Karline Soetaert, Thomas 
Petzoldt, and  R. Woodrow Setzer (Soetaert, 2012). 
 
The R package deSolve 
deSolve has several built-in functions for computing a numerical solution of initial value 
problems (IVP) for ODEs. A simplified form of the syntax for solving ODEs is 
 
 ode(y, times, func, parms, …….) 

 
where times holds the times at which output is wanted, y holds the initial conditions, func is 
the name of the R function that describes the differential equations, and parms contains the 
parameter values (or is NULL).  
 
Many additional inputs can be provided, e.g., the integration method, the absolute and 
relative error tolerances and the maximum number of steps of the integration method. We 
will not discuss these additional inputs in this tutorial but you can find more information in 
the deSolve manual pages. 
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1.1 Example 1. Conversion of A to P 
The simplest possible reaction is the irreversible conversion of substance A to product P 
(e.g., radioactive decay; see also Appendix I): 

 
The corresponding differential equation is given by: 

( ) ( )

( 0) 0

A
A

A

dC t kC t
dt

C t

= −

= =
 

 
Here CA represents the concentration of A. To implement this initial value problem (IVP) in R 
we first define the parameter k and the initial condition C(0). What are the units of C and k? 
 
 
 k=0.2    #proportionality constant  
 Cini=10  #initial value of concentration at t=0 

 
The simple differential equation is implemented in an R function called ‘derivs’ and takes as 
arguments the current time (t), the value of the dependent variable (C) and a parameter 
vector (parms), and returns the derivative as a R list. The parameter k, although defined 
outside of function derivs is also known within the derivative function: 
 

derivs = function(t, C, parms) { 
   dC = -k*C          #calculate the derivative 
   return (list(dC))  #return the derivative 
} 

 

We require output at half day intervals for 20 days, which we specify in the vector ‘times’ by 
using the R function ‘seq’: 

times = seq(from =0, to=20, by=0.5) 

 

The model is solved, using the R function ‘ode’. The integrator ode is available from the 
package deSolve, which is loaded first: 

library(deSolve) 
out = ode(y=Cini, times=times, func=derivs, parms=NULL) 

Note that we have set parms=NULL because we defined the parameter k as a global 
variable. 
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The output of this model is a matrix consisting of two columns, first time then the state 
variable C. We print the first five lines of this matrix and plot the results of the model: 

head(out,n=5) 
plot(out, type='l', col='blue', xlab='time',  
ylab='C',main="First order reaction") 
 

 
Exercise 1.1. Implement your first model 
Now you have all the R code to implement your first model in R. In R Studio start a new script 
to implement this code (‘+’ icon in top-left corner). Copy/paste the R code in this script. 
Subsequently, you can select one or more lines with your mouse and execute the selected 
part of the script but clicking ‘run’ (from command bar on top of your script). 
 
Execute the script two times with different values for k. What is the effect of k? Hint: run the 
model twice and collect the output in out1 and out2. Then use the following code to plot the 
results: 

plot(out1,out2, type='l', col=c('blue','red'),lty=c(1,1),  
         xlab='time', ylab='C',main="First order reaction") 
 
legend("topright",legend=c("k=0.1","k=1.0"),lty=c(1,1),col=c
('blue','red')) 

 
 

 
 
 
1.2 Example 2: Pharmacokinetics 
In order to be effective, the concentration of a drug taken by a patient must be large enough, 
yet too high concentrations may have serious side effects. Pharmacokinetic models are tools 
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to test the optimal frequency and dosing of drug intake. They represent absorption, 
distribution, decay and excretion of a drug. In the model below we assume that the drug is 
dosed orally (pills) and affects the absorption through the gut. The model calculates the drug 
concentration in the intestine and blood. 
 
The system is defined by a system of two differential equations and, consequently, two initial 
conditions: 

intestine( )    

        

(0)

blo

0
(

od

0) 0

dI aI u t
dx
dB aI bB
dx
I
B

= − +

= −

=
=

  

where I and B represent the drug concentration in the intestine and blood respectively. Both 
I and B are time dependent and should actually be written as I(t) and B(t) but this has been 
omitted for sake of brevity. The constant a is the absorption rate, and b is the removal rate 
from the blood. We assume that at t=0 the drug concentration is zero. Note that the drug that 
disappears from the intestine (-aI), appears in the blood (+aI) (mass action kinetics). 
 
What are the units of I, B, u, a and b? 
Draw a cartoon (figure) on paper to represent this biological system. 
 
Definition mass action kinetics: a kinetic scheme for chemical reaction networks which says that the 
rate of a chemical reaction is proportional to the product of the concentrations of the reacting 
chemical species. It remains one of the most common kinetic assumptions used by chemists, 
biologists, and mathematicians. 

 
Since we have two initial values we use the vector yini to provide these initial values to ‘ode’.  
 
What makes this model a little more complex is the dosing of the drug to the intestine. We 
assume that dosing u(t) assumes a constant value for 1 hour, after which it is 0 for the rest of 
the day. Since the uptake is periodic we can use the modulo function (%%) to represent the 
uptake of the drug. Recall that the modulo operation finds the remainder of division of one 
number by another. Thus 6 %% 2 = 0 and 6 %% 4 = 2. 
 
We calculate the model for 10 days and require output every hour.  
 
The R code of this model is give below. Note that the drug concentrations in the intestine and 
blood are defined as y1 and y2, and u(t) is defined as uptake. 
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library(deSolve) 
 
a = 6 
b = 0.6 
yini = c(intestine = 0, blood = 0) 
 
pharmacokinetics = function(t, y, p) { 
  if ( (24*t) %% 24 <= 1) 
    uptake = 2 
  else 
    uptake = 0 
  dy1 = - a* y[1] + uptake  
  dy2 =  a* y[1] - b *y[2] 
  list(c(dy1, dy2)) 
} 
 
times = seq(from = 0, to = 10, by = 1/24) 
out = ode(func = pharmacokinetics, times = times, y = 
yini) 
 
head(out) #inspect the output 
 
#plot the concentrations is separate plots 
plot(out, lwd = 2, xlab = "day") 
 
#plot both concentrations in a single plot 
matplot(out[,-1],type='l')         

 
 
Exercise 1.2. Run the pharmacokinetic model 
A. Without running the model, make a sketch of the drug concentrations in the intestine 

and in blood. 
B. Now run the model in R Studio and make sure you understand the code.  Does this agree 

with your expectations? 
 
This concludes the second part. You now should have a basic understanding of the deSolve 
package and how this can be used to solve differential equations.  
 
However, there is one more thing to explain. We can slightly modify the code give above to 
implement the model by using the R construct ‘with’: 
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parameters = c(a = 6, b = 0.6) #vector of parameters 
yini = c(intestine = 0, blood = 0) #vector of initial 
conditions 
 
pharmacokinetics <- function(t, y, parms) { 
  with(as.list(c(y,parms)), {  
     if ( (24*t) %% 24 <= 1) 
       uptake = 2 
     else 
       uptake = 0 
     dy1 = - a* intestine + uptake  
     dy2 =  a* intestine - b*blood 
     list(c(dy1, dy2)) 
  }) 
} 
 
times <- seq(from = 0, to = 10, by = 1/24) 
out <- ode(func = pharmacokinetics, times = times,  
           y = yini, parms = parameters) 

 

Instead of defining a and b as global variables we have now made them part of a vector 
‘parameters’ that is provided to the function ‘ode’. The use of ‘with’ allows to use the names 
of the variables in the vectors ‘parameters’ and ‘yini’. Thus instead of using y[1] and y[2] we 
use now ‘intestine’ and ‘blood’ in the function for the derivatives. This improves the 
readability of the code and avoids problems with the use of global variables.  

 

Note: In the answers of the exercises of Part II, we have used the ‘with’ construct. Thus, we 
suggest that you use it also when implementing the SIR model. 
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Part II. Implementation and analysis of the SIR model 
In the exercises below we will model the outbreak of an infection in a population. The model 
we use is based on the SIR model of Kermack and McKendrick (1927). SIR refers to susceptible 
to disease (S), infected individuals (I) and Removed (Recovered) individuals (R) (because of 
acquired immunity). The SIR model is shown in Figure 1  
 

 
Figure 1. The SIR model according to Kermack  and McKendrick (1927). Birth can also be interpreted as immigration. 

 
 
Exercise 2.1. Define the SIR model 
You have seen that the ordinary differential equation (ODE) for the susceptible individuals 
can be defined as: 

 
S0 denotes the initial condition. Note that these equations are symbolic. We specify values for 
the parameters (r) and initial conditions later. 
 
A. What are the units for rB, rS, and rI? 
B. As a first step write down the ODEs and initial conditions for I and R. 
C. This model is a simplification of the biological reality. Mention one simplification. 
D. Make a sketch on paper of the expected dynamics of this model. That is, how do S, I and 

R change over time? 
 
Exercise 2.2. Implementation and calculation of SIR model 
A. Implement the SIR model in R and use the package deSolve to solve the ODEs. Perform a 

simulation for 365 days and request output for every day. 
 

0 0                   ( )B S I
dS r r R r SI S t S
dt

= + − =
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Assume that the parameters of this model are known from literature. Use the following 
values: 

3
0.01
0.0005
0.05
0.02

B

S

I

R

D

r
r
r
r
r

=
=
=
=
=

 

 
Use the following initial conditions: 

S0 = 990 
I0 = 10 
R0 = 0 

 
Thus, 99% of the individuals in a population of 1000 are healthy, yet susceptible to disease 
(S=990). 1% of the population is infected for unknown reasons. Nobody is initially immune. 
 
 
B. How do you interpret the results? 

 
C. How many individuals have died? Can you change to model to explicitly show this? 
 
 
Exercise 2.3: Diagnosis: determining the steady state of the system 
In a steady state none of the variables (S, I and R) change anymore in time. That is, dS/dt, dI/dt 
and dR/dT are zero. 
 
A. For this simple model we can easily determine the steady state without a computational 

method just by solving the resulting linear equations. Derive the steady state values for S, 
I and R. What is the total population size at steady state? What do you conclude from this? 
Use the R model to verify your steady state values. 

 
B. What will happen to the steady state values of S, I and R if we start with an initial 

population size of S=1500? What happens if we start with S=700?  
 
 
Exercise 2.4. Diagnosis: robustness of SIR model 
Next we will make a (small) change to one of the parameters to investigate the effect the 
outcome.  
A. Reduce the infection rate to 20% of its present value (change rI = 0.0005 to rI = 0.0001) 

and run the SIR model for 730 days. Is there any change? What do you conclude? 
B. Make ri 100 times large and run the model again to compare. 
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C. Assume that individuals obtain permanent immunity. Change and run the model again. 
Will this system reach a steady state? 

 
 
Exercise 2.5. Exploration: asymptomatics 
Suppose it becomes clear that many infected individuals do not show any serious symptoms 
and often do not even know that they carry the disease. Such individuals are called 
asymptomatics (A). To account for these individuals, we can make a modification to the model 
as depicted in Figure 2. 
 

 
Figure 2. Extension of the SIR model to include asymptomatics (A) 

Here we assume that contact between S and I cannot lead to A and, vice versa, contact 
between S and A cannot lead to I. Whether or not this is a valid assumption should be based 
on our prior biological and/or medical knowledge of the disease process. 
 
A. Change the equations of the SIR model to account for asymptomatic individuals (A). 
B. Implement and calculate the model in R. Assume that the infection of asymptomatic 

individuals is less severe. 
 
 
Exercise 2.6. Model assessment: global sensitivity analysis 
The parameters of the SIR model have certain variability (why?) and consequently can vary 
within a certain range.  Changes in one or more of the parameters affect the outcome (S, I, 
and or R). Here we will evaluate the effect of parameter changes. 
 
We will first perform a global sensitivity analysis that assesses the effects of parameters on 
model outcome over a large region in the space of biologically reasonable parameter values. 
A global sensitivity analysis can be performed with the R function ‘sensRange’ from the R 
‘FME’ package. 
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In the previous exercises we have used the values shown below: 
 

3
0.01
0.0005
0.05
0.02

B

S

I

R

D

r
r
r
r
r

=
=
=
=
=

 

 
We will now investigate the effect of changes in these parameters if we vary them within a 
certain range: 

 
[0,5]
[0,0.2]
[0,0.001]
[0,0.1]
[0,0.1]

B

S

I

R

D

r
r
r
r
r

∈
∈

∈
∈
∈

 

We will use the same initial conditions: S=990, I=10, R=0. 
 
To define the parameter ranges use the following R constructs: 

parRanges <- data.frame(min = c(0,0,0,0,0), max = c(5, 0.2, 0.001,0.1,0.1)) 
rownames(parRanges) <- c("rb", "rs", "ri","rr", "rd") 
parRanges 

 
To be compatible with the FME sensRange function, you must embed the ‘ode’ function in 
another, self-defined, function: 

solveSIR = function(parms, yini, times) { 
         out <- ode(y = yini, times = times, func = SIR, parms = parms, 
                                     verbose=FALSE, method = "lsoda") 
                  return(out) 
             } 
 
Now you are ready to perform the analysis using (determine the parameters for sensRange 
yourself): 

Library(FME) 
sum.sR = sensRange(…………) 

 
The results of the analysis can be plotted with: 

par(mfrow=c(2,3)) 
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plot(summ.sR, xlab = "time, days", ylab = "#individuals", 
legpos = "topleft", mfrow = NULL) 

 
plot(summ.sR, xlab = "time, days", ylab = "#individuals", mfrow = NULL, 
quant = TRUE, col = c("lightblue", "darkblue"), legpos = "topleft") 
mtext(outer = TRUE, line = -1.5, side = 3, "Sensitivity to rB", cex = 1.25) 
par(mfrow = c(1, 1)) 

 
A. Perform a global sensitivity analysis using the sensRange function (use ?sensRange to view 

the documentation of this function). Only consider the parameter rB and keep the others 
fixed. Evaluate the parameter on a grid (dist=grid). Use num=50 to obtain 50 evaluations 
for each parameter. What is the exact meaning of ‘grid’? How do you interpret the results 
of sensRange? 

 
B. Instead of using the ‘grid’ approach we can also use the Monte Carlo approach. Use 

grid=unif (what is the effect of unif?). Perform a Monte Carlo analysis for all parameters 
simultaneously. What is your conclusion? 

 
 
Exercise 2.7. Model assessment: local sensitivity analysis 
Instead of varying the parameters over a large range we can also investigate the effect of 
small changes at specific values for the parameters (which may have been obtained from 
literature or from curve fitting).  
 
The sensFun function of the FME package performs such local sensitivity analysis by 
considering the (partial) derivatives of the model output with respect to the parameters (not 
with respect to time): 

         
0

( )

p p

Y pV
p

δ
δ =

=   

 
Where Y is the model output (S, I or R) and p is a parameter. This derivative is evaluated at a 
value p0. To obtain dimension-free sensitivity information that enables comparison, sensFun 
considers the scaled sensitivity: 

* pS V
SC
∆

=  

 
where Δp is an a priori measure of the reasonable range of p, which can be chosen as p0 if 
little prior knowledge is available and at least accounts for different scales of the parameters. 
SC is a scale factor with the same dimensions of the observation, accounting mainly for 



 Computational Modelling using ODEs: outbreak of an infection 
 

ARCAID. Introduction to Bioinformatics Page 13 
 

different scales of different output signals (in our case different scale at different time points). 
SC can be chosen as the mean value of the observations. See Brun (2001) for more 
information. 
 
sensFun results in so-called sensitivity functions for each parameter that denote the scaled 
partial derivatives over all observations for each model output variable. 
 
sensFun is used as follows: 

sns = sensFun(func=solveSIR, parms=parameters, yini=yini, times=times365,  
                      sensvar="S", 
                      varscale=1, parscale=NULL) 

head(sns) 
plot(sns,legpos="bottomright") 

 
This calculates the sensitivity functions for all parameters for the model output S. Here we set 
SC to 1 (varscale) and Δp to p0 (i.e., parscale=NULL). 
 
A. Perform a local sensitivity analysis for output S and all parameters. What is your 

conclusion? 
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Appendix 1. nano-tutorial ‘differential equations’ 

Note: if you are familiar with differential equations then you can skip this part. 
 
1.1 Differential equations 
A differential equation is any equation which contains derivatives, either ordinary derivatives 
(ODE; the dependent variable is a function of only one independent variable) or partial 
derivatives (PDF; more than one independent variable; e.g., time and position). Below we only 
consider ODEs. 
  
There is one ordinary differential equation that everybody probably knows, that is Newton’s 
Second Law of Motion. If an object of mass m is moving with acceleration a and being acted 
on with force F then Newton’s Second Law tells us: 

F m a= ×   
 

To see that this is in fact a differential equation we need to rewrite it a little. First, remember 
that we can rewrite the acceleration, a, in one of two ways: 

2

2    or     dv d ua a
dt dt

= =  

 
where v=velocity, u=distance and t=time. Acceleration is the change of velocity in time, or the 
change of change of distance in time. 
 
Consequently, Newton’s second law can be rewritten as one of the following two differential 
equations: 

2

2

1:    =F(t,v(t))

( )2 :   ( , ( ), )

dvm
dt
d u du tm F t u t
dt dt

=
 

The first differential equation is a first order differential equation. The second equation is a 
second order differential equation. Note that a ‘normal’ equation (algebraic equation) such 
as y=x2 has a number as solution.  In contrast, a differential equation has not a number but a 
function as solution. A differential equation gives a relation between a function and its 
derivatives. 
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1.2 Example: First-Order irreversible reaction 
The simplest possible reaction is the irreversible conversion of substance A to product P 
(e.g., radioactive decay): 

 
We assume that this reaction is ‘first order’, i.e., the amount of A that is converted to P is 
proportional with A. Thus, the more we have of A the more of P will be formed per second. If 
the concentration of A doubles, then twice as much of A will be converted to P. This can be 
described in a differential equation: 
 

1
( ) ( )A

A
dC t k C t

dt
= −       

  
where CA is the concentration of A and k1  is a proportionality constant with dimension ‘per 
second’. This equations shows that the change of concentration A in time, dCA(t)/dt, is 
proportional with the concentration of A. The minus sign indicates that the concentration of 
A reduces in time.  This reaction represents a first order reaction since the change in 
concentration is proportional with the concentration of A to the power of 1. Don’t confuse 
this with first order differential equations. 
 
In the next step we solve the differential equation to determine the concentration A as 
function of time. For this ODE the solution is very simple. We are searching for a function of 
which the derivative is the function itself multiplied with a constant. In this case we can use 
an exponential function as solution. We try the following function:  
 

( ) t
AC t eβα=   

Substituting in the differential equation gives: 
 

1

1

1

1

( ) ( )A
A

t t

t t

dC t k C t
dt

d e k e
dt

e k e
k

β β

β β

α α

αβ α
β

= −

= −

= −
= −
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We see that a solution of this differential equation is β = -k1, giving 

1( ) k t
AC t eα −=  

However, we cannot determine the value of α. This is a common feature of differential 
equations. In general, there is a family of functions to provide solutions to the differential 
equation. In Figure 1 below five solutions for the differential equation are drawn; each with a 
different value of α (corresponding to different initial conditions C(0); see below). 
 

 
Figuur 1. Family of functions that provide solutions to the ordinary differential equation. The lines represent solutions 
given various initial conditions, C(0). 

To obtain a unique solution we also have to provide an initial value for the concentration. 
Hence, this type of problem is called an initial value problem (IVP). This is the value that the 
function assumes at t=0. In our example this is the starting concentration of A. Let’s call this 
concentration C. Now we can determine the solution from the family of solutions that provide 
the correct initial value: 

 

1

1 0

( )
(0)

k t
A

k
A

C t e
C C e

C

α

α
α

−

−

=

= =
=

 

 
Thus, the solution of this differential equation with initial condition C(0)=C is 

1( ) k t
AC t Ce−=  
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Thus, in this example, we now solved the differential equation for the first-order reaction by 
using a trial function of which we determined the unknown parameters (α, β) by substituting 
the trial function in the differential equation and using the initial conditions. A more general 
and formal approach to solve differential equations is through integration. 
 
We integrate both sides of the differential equation from t’=0 to t’=t: 

' '

1
' 0 ' 0

1
0 0

1
0 0

( ') ' ( ') '
'

( ') ( ') '

( ') '
( )

t t t t
A

A
t t

t t

A A

t t
A

A

dC t dt k C t dt
dt

dC t k C t dt

dC t k dt
C t

= =

= =

= −

⇒ = −

⇒ = −

∫ ∫

∫ ∫

∫ ∫

 

t’ is a dummy variable for integration without any further meaning. t denotes the time. Next 
you need some knowledge about integration and primitive functions. The derivative of ln(x) 
is f(x) = 1/x thus the left integral is equal to ln(CA(t’)). The right integral results in t’: 

1

1

1

1

1

1

ln ( ') '  
0 0

ln ( ) ln (0) ( 0)
( )ln
(0)

( )
(0)
( ) (0)
( )

A

A A

A

A

k tA

A
k t

A A
k t

A

t t
C t k t

C t C k t
C t k t
C

C t e
C
C t C e
C t Ce

−

−

−

= −

⇒ − = − −

⇒ = −

⇒ =

⇒ =

⇒ =

 

The initial value of CA(t) (i.e., C) enters the solution correctly because we integrated from t=0 
to t=t. 
 
Note: only do the next exercise if you are interested in practicing your integration skills. In Part 
II and III we will numerically solve differential equation models and will not search for 
analytical solutions like we have done in this part. In fact, many differential equations are 
impossible to solve analytically. 
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Exercise 1.1. The Weber-Fechner law 
In psychology, one model of stimulus-response asserts that the rate of change dR/dS of the 
response R (of an individual) with respect to a stimulus S is inversely proportional to the 
stimulus: 

dR k
dS S

=   

where k is a positive constant. 
Assume that S0 is the lowest level of stimulus that can be detected and that the for this 
stimulus the response R(S0) of the individual is 0. 
 
Solve this equation through integration to obtain the function R. 
 
Answer 

[ ]
0 0

' '

' '

0 0

0

'
'

( ) ( ) ln( ) ln( )

( ) ln

S S S S

S S S S

dR k
dS S

kdR dS
S

kdR dS
S

R S R S k S S

SR S k
S

= =

= =

=

=

=

− = −

 
=  

 

∫ ∫
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R code to make this plot: 
x=(1:20) 
r=2*log(x)/1 
plot(x,r,type='l',col='blue',xlab='S', ylab='R', main='R=k*ln(S/S0)',ylim=c(-1,6.5)) 
abline(v=1,col='green',lty=2) 
abline(h=0,col='black',lty=1) 
text(1,-0.5,"S0",col='green') 


