Sequencing of neuroblastoma From Mutations to Phenotypes

Jan Koster, Jan Molenaar, Danny Zwijnenburg, Marli Ebus, Ida van der Ploeg, Linda Valentijn, Peter van Sluis, Ellen Westerhout, Tim van Groningen, Johan van Nes, Thomas Eleveld & Rogier Versteeg

# Neuroblastoma

- Neuroblastoma
  - Childhood neuro endocrine tumor
  - Peripheral nervous system
    - Neural crest derived
    - Neuroblast should normally form neurons
  - Young children (mostly 0-3 years)





# Neuroblastoma

- Pathogenesis of neuroblastoma
  - Variable clinical outcome
    - Low INSS stages (1,2)
      - Good prognosis
      - Numeric changes of chromosomal copy numbers
    - High INSS stages (3,4)
      - Poor prognosis
      - Structural chromosomal defects (LOH1p / 11q etc)
    - Special stage (4S)
      - Spontaneous regression





# High stage neuroblastoma

- Poor prognosis
- Subgroup (~1/3) characterized by MYCN amplification
- Rest unknown





# Gene defects in neuroblastoma

| MYCN amplification      | 20% | (Schwab et al., 1983)                           |
|-------------------------|-----|-------------------------------------------------|
| ALK                     | 7%  | (George/Mosse/Janoueix-Lerosey/Chen 2008)       |
| Cyclin D1 amplification | 4%  | (Molenaar et al., 2003)                         |
| PHOX2B                  | 4%  | (van Limpt et al., 2004)                        |
| PTPRD                   | 4%  | (Stallings et al. 2006)                         |
| NF1                     | 3%  | (Hölzel et al., 2010)                           |
| PTPN11                  | 2%  | (Merks et al., 2004, Bentires-Alj et al., 2004) |
| FOXR1                   | 1%  | (Santo et al., 2011)                            |
| LIN28B                  | 1%  | (Molenaar et al., 2012)                         |



# Some defects can be targeted in therapy

- Gene defects can make tumors susceptible to intervention
  - Activated ALK (F1174L) can be inhibited by TAE-684





George et al, Nature, 2008

# Which are the potential targets in NB?

- Assess the composition and copy number of every base in the entire genome
- Recent developments in sequencing technology make whole genome sequencing possible and affordable







#### **BGI/Complete Genomics WGS technology**



jankoster@amc.uva.nl

Genomics

# Somatic variants

- Compare tumor genome to normal genome
  - Subtract all events that are in common to both
  - Apply some quality filters



Differences with respect to Reference genome



# Somatic Tumor/Lymphocyte comparisons



# Somatic Tumor/Lymphocyte comparisons



# Somatic Tumor/Lymphocyte comparisons



jankoster@amc.uva.nl

# Pediatric whole genome sequencing

Paucity of somatic mutations is becoming a recurrent theme in pediatric cancers



**Figure 2** Genetic landscape of 15 different types of pediatric cancers determined from whole-genome sequencing of 260 tumors and matching germline samples.



### Pediatric whole genome sequencing



**Figure 2** Genetic landscape of 15 different types of pediatric cancers determined from whole-genome sequencing of 260 tumors and matching germline samples. The number of somatic mutations in each sample,

-Head and neck cancer (66) Lung cancer (non-small cell)(147) Lung cancer (small cell)(163) Esophageal adenocarcinoma (57) L Esophageal squamous cell carcinoma (79) Gastric cancer (53) Colorectal cancer (66) Endometrial cancer (49) Prostate cancer (41) lanoma (135) Non-synonymous mutations per tumor (median +/- one quartile) 175 150 125 100-75-50 25 Lung (SCLC) Colorectal (MSI) UNSCLC) ohageal (ESC orectal (M Head and Globk Hepato (high-grade etrial (endo lymphocytic Endo ancreatic Acute 0 ć t Adult solid tumors Pediatric Mutagens Liquid

Vogelstein et al, Science, 2013

Genomics

# # Mutations correlate with stage and survival





# Conclusions from WGS of neuroblastoma

1 Low frequency of somatic mutations



# Patient WGS Coverage

 On average, every base in a tumor, as well as its corresponding lymphocyte sample has been seen ~50 times (Coverage). This can be plotted on the genome





# Patient WGS Coverage



jankoster@amc.uva.nl

Genomics

# Ultra high resolution



Genomics

# Paired-end sequencing to identify structural variants



| Event Type in sequenced genome | Manifestation when mapped to reference genome |
|--------------------------------|-----------------------------------------------|
| Insertion                      | Mate distance << 500                          |
| Deletion                       | Mate distance >> 500                          |
| Inversion                      | Conflicting mate orientations                 |
| translocation                  | Conflicting mate chromosomes                  |



#### Structural variants





### Somatic structural variants



Genomics

# Structural variation affects single genes



- ATRX gene
  - Broken -> Alternative lengthening of telomeres (ALT)
- Cheung et al, JAMA 2012
  - ATRX mutations in older neuroblastoma patients with dismal prognosis

#### age at diagnosis (Y)

| N479T | 3.7  |
|-------|------|
| N576T | 4.6  |
| N683T | 3.9  |
| N718T | 3.5  |
| N744T | 17.0 |



# Structural variation affects single genes





- PTPRD (5)
  - Involved in Growth Cones

- ODZ family (10)
  - Axon Guidance / Neuritogenesis
  - ODZ3: 5 structural defects
  - ODZ2: 2 missense defects
  - ODZ4: 1 structural + 2 missense



Molenaar & Koster et al, Nature, 2012

# Structural variation affects single genes



- Select events that affect limited number of genes
  - Deletion/duplication within 1 gene
  - Inversions
  - Potential fusion genes



451 events



# Integration of mutation and SV data

Splice junctions (n=37) Variants within 2 bases around the exonbounderies

#### Somatic mutation (n=586 genes)

Amino change or worse Keep all validated and true Remove validated and NOT true Somatic>0.1 Not in CG reference samples Not in lymphocytes No insertions or substitutions If a gene has 0% present calls in nb119 but >0% in normal504, then skip



#### Somatic Structural Variants (n=451)

(no baseline genome\_v2; no under represented Repeats; length>=70; mates>=10; no artifact) Break by inversion Exon bites <=5 expressed genes in region <=1,000,000 Potential fusion strand match

Combined table (n=1,041)



# Integration of mutation and SV data

Recurrent gene defects:

- 11 genes >=3 patients
- Most recurrent genes involved in neuritogenesis / growth cones
  - PTPRD / ODZ3



Many of the recurrent genes have also been identified in other sequencing efforts



#### Neuritogenesis defects cluster in high stage Neuroblastoma





Molenaar & Koster et al, Nature, 2012

# RAC/Rho signaling in neuritogenesis



# RAC/Rho signaling in neuritogenesis



# RAC/Rho signaling in neuritogenesis



#### Inducible RhoA knockdown



Ellen Westerhout

#### Inducible RhoA knockdown



Ellen Westerhout

jankoster@amc.uva.nl

# Conclusions from WGS of neuroblastoma

1 Low frequency of somatic mutations

2 Neuritogenesis signaling frequently affected in high stage neuroblastoma



# Chromosome shattering in neuroblastoma





### Chromosome shattering in neuroblastoma


## Chromosome shattering in neuroblastoma



- Chromothripsis (2011)
  - Greek for 'chromosome' (*chromo*) and 'shattering into pieces' (*thripsis*)
  - Single catastrophic event (limited state changes)



#### Chromothripsis in neuroblastoma



#### Chromothripsis in neuroblastoma





## Chromothripsis in neuroblastoma



- 10 cases
  - All high stage (18% of high stage)
    - 9 times inss 4
    - 1 times inss 3
  - 4 patients MYCN amplification
  - 8 patients diseased
  - 2 cases patient derived cell lines are being maintained



## cause/mechanism chromothripsis elusive

- Limited state changes
  - Single event
- Usually localized to chromosome or region
  - Most likely when chromosomes are condensed (mitosis)
- Micronuclei
  - Occur upon segregation errors
  - Shown to generate structural chromosome alterations



## Potential targets of chromothripsis

- Genes known to be of importance to NB
  - MYCN
  - MYC
  - CDK4
- Also number of unknowns
  - Chromosome 5









## Associations with chromothripsis

- Rausch et al, Cell, 2012
  - SHH subtype of medulloblastoma
  - Frequent chromothripsis
  - Ass. with germline p53 mutations









## Associations with chromothripsis

- FANCM microdeletion
  - DNA damage response
    - Stalled replication forks





## Conclusions from WGS of neuroblastoma

1 Low frequency of early tumor driving mutations

2 Neuritogenesis signaling frequently affected in high stage neuroblastoma

3 Chromotripsis associated with high stage neuroblastoma, poor prognosis and aberrations in DNA damage signaling



## Neuroblastoma relapses (n=23 trio's)



Eleveld et al, Nature Genetics, 2015

Genoi

## Neuroblastoma relapses (n=23 trio's)



Eleveld et al, Nature Genetics, 2015

Genom

## Conclusions from WGS of neuroblastoma

1 Low frequency of early tumor driving mutations

2 Neuritogenesis signaling frequently affected in high stage neuroblastoma

3 Chromotripsis associated with high stage neuroblastoma, poor prognosis and aberrations in DNA damage signaling

4 Relapsed neuroblastoma landscape different from primary tumors and reveals new targets for therapy



## **Survey Structural Variation**

Are there hotspots of SV in the neuroblastoma genome?



## TERT region has gains, losses and inversions in 23% of high stage NB





### **TERT** expression affected



# TERT upstream region mostly quiescent / repressed



NIH epi roadmap HMM15 Active TSS Flanking Active TSS Transcr. at gene 5 and 3 Strong transcription Weak transcription Genic enhancers Enhancers ZNF genes & repeats Heterochromatin Bivalent/Poised TSS Flanking Bivalent TSS/Enh Bivalent Enhancer Repressed PolyComb Weak Repressed PolyComb Quiescent/Low Valentijn & Koster et al 2015 Nat. Genet



#### TERT rearrangements have many different translocation partners



Valentijn & Koster et al 2015 Nat. Genet



#### Enhancers



http://www.cell.com/trends/genetics/fulltext/S0168-9525(12)00033-9

Genomics

### TERT translocates to super-enhancers



#### TERT translocates to super-enhancers



#### TERT translocates to super-enhancers



|            | r100k   | r250k  | r500k   | r750k   | r1000k  |
|------------|---------|--------|---------|---------|---------|
| p count>=5 | 0.00034 |        |         |         |         |
| p count>=6 |         | 0.0011 |         |         |         |
| p count>=7 |         |        | 0.00306 |         |         |
| p count>=9 |         |        |         | 0.00045 | 0.00234 |

100,000 iterations of random breakpoints



## ATRX impairment => ALT



Valentijn & Koster et al 2015 Nat. Genet

am Onco Genomics

## **Telomeres length NGS**



Telomeres are (TTAGGG)<sub>n</sub> Search for reads containing multiple instances (>=4) of this sequence and relate to total reads



С.

Onco

Genomics

Valentijn & Koster et al 2015 Nat. Genet

#### Telomere length TRF analysis





## Chromothripsis

• 5 chromothripsis cases directly affect TERT





## Clinical / Molecular association



- ATRX inactivation MYCN amplification MYC amplification
- chromosome 1p lossstage 4chromothripsisstage 3ALK mutation> 18 monthswt<= 18 months</td>



#### Clinical / Molecular association





## Take home messages on TERT

- TERT region is frequently affected by structural variations in high stage Nb
  - Which leads to upregulation of TERT expression
  - Potentially through enhancer hijacking
  - Is associated with longer telomeres
- TERT affected patients show adverse prognosis
- Subgroup of Nb may be a telomere driven disease
- Pharmacological inhibition of TERT/ALT should be explored for this group
  - ATR inhib. for ALT in osteosarcoma (Flynn et al. Science 2015)
  - Telomerase inhib. In neuroblastoma (Kremer et al., ANR2016)



#### Neuroblastoma sub-clones

- Patient derived cell lines
  - Multiple lines from same patient
  - Different phenotypes
    - 'Stem cell' marker CD133
    - Mesenchymal properties







### Pairs segregate along a MES/ADN axis





## Pairs can interconvert into one another

- Pairs are vastly different on mRNA level
- N700 parental line is mixed (MES/ADN)
  - FACS sorting (CD133) for one always results in mixture containing a small sub population of the other
  - Even after single cell sorting
  - In mice, also tumors from CD133<sup>-</sup> cells were always heterogeneous
- Interconversion occurs
- Incompatible with genetic differences
- Enhancer driven?



### **Enhancer Landscape**

- Assessed enhancer landscape in 9 samples
  - 4 X MES







| Align regions SE>= 2 cell lines | Cluster Profiles                                                                                                            | Prepare for visualization                             |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                                 | Exclude transcription induced signals<br>Merge to point estimates<br>Cluster on samples<br>Order on diff. Signals (MES/ADN) | Replace point estimates by SE peak profiles (+/- 1mb) |



## SuperEnhancer Landscape MES/ADN





## SuperEnhancer Landscape MES/ADN



## Transcription Factors amongst most differentially expressed genes



van Groningen & Koster et al 2017 Nat. Genet (in revision)



# Introduction of PRRX1 into ADN cell line leads to MES transformation

c






## MES cells are more resistent to therapy





## MES cells do exist *in-vivo* and may be enriched upon treatment







b



am Onco Genomics

van Groningen

& Kosi

ച

2017

Nat.

Genet (in

NOISION

## Take home messages subclones

- Neuroblastoma contains at least 2 sub-types of cells
   ADN / MES
- Sub-types can interconvert
  - Associates with different SE landscapes and gene expression profiles
- PRRX1 can impose a MES switch in ADN cells

   And SE landscape
- MES cells more resistent to therapy
  - Enriched upon treatment / and relapse
- Could have profound implications for patient treatment



## Acknowledgements

- Oncogenomics Amsterdam (AMC)
  - Bioinformatics
    - Jan Koster
    - Danny Zwijnenburg
  - Wet-lab biology
    - Jan Molenaar
    - Marli Ebus
    - Ida van der Ploeg
    - Linda Valentijn
    - Ellen Westerhout
    - Peter van Sluis
    - Johan van Nes
    - Tim van Groningen
    - Thomas Eleveld
  - Rogier Versteeg

- BGI/Complete Genomics
  - Rick Tearle
  - Greg Tyrelle





steunt kinderkanker onderzoek



Het fonds tegen Neuroblastoom kinderkanker



