

Next Generation Sequencing Core Facility Genomics Marja Jakobs

Dideoxynucleotides and radioactive labeled fragments

Conventional Sanger sequencing

Sanger Sequencing

DNA polymerase, dNTP's and dye-labeled dideoxynucleotides (terminators)

Next Generation Sequencing

Mass Parallel Sequencing of unique DNA molecules

Main NGS platforms:

- PacBio
- Oxford Nanopore
- Illumina
- Ion Torrent

Throughput vs readlenght Sequencing platforms

Differences in Sequencing Strategies

CONVENTIONAL		<u>NGS</u>
one sample	\longleftrightarrow	Pool of molecules
one tube	\longleftrightarrow	one reaction vessel
one reaction	\longleftrightarrow	many reactions
one result	\longleftrightarrow	many results

Several NGS strategies

Single molecule vs clonal amplification

Sequencing by synthesis

> Sequencing with terminators

Two approaches

Single molecule

• SMRT sequencing

Detection of incorporation of dNTPs in a single molecule (PacBio)

• Nanopore sequencing

Pulling a lineair (c)DNA / RNA strand through a nanopore (NanoPore)

Clonal amplification

- Amplify a single molecule to obtain a pool of identical molecules
 - > Emulsion PCR (IonTorrent)
 - Polony formation (Illumina)

Single vs Amplified

Single strand

- No amplification, no bias
- No copying erros
- Long reads
- Modifications stay intact
- Very low signal
- High error rate (~14%)

Clonal Amplification

- Strong signals
- PCR errors are averaged
- High throughput
- PCR bias/errors
- Short reads
- Loose modifications

Next Generation Sequencing

Mass Parallel Sequencing of unique DNA molecules

Main NGS platforms:

• PacBio

Single molecule, labeld dNTP's

- Oxford Nanopore
- Illumina
- Ion Torrent

Single Molecule Real Time sequencing (PacBio)

Single Molecule Real Time sequencing (PacBio)

Next Generation Sequencing

Mass Parallel Sequencing of unique DNA molecules

Main NGS platforms:

- PacBio
- Oxford Nanopore

Single molecule

- Illumina
- Ion Torrent

Single Molecule sequencing (Oxford Nanopore)

DNA can be sequenced by threading it through a microscopic pore in a membrane. Bases are identified by the way they affect ions flowing through the pore from one side of the membrane to the other.

Next Generation Sequencing

Mass Parallel Sequencing of unique DNA molecules

Main NGS platforms:

• PacBio

 \bullet

- Oxford Nanopore
- Illumina
 Clonal amplification, terminator Seq
 - Ion Torrent Clonal amplification, synthesis Seq

Clonal amplification

Illumina (polony formation)

Repetition forms clusters of identical strands

IonTorrent (emulsion PCR)

Next Generation Sequencing platforms AMC / VUmc

- PacBio Illumina
 - ≻ Sequel II

≻ MiSeq

≻ HiSeq 4000

- Oxford Nanopore
 - ≻ Minlon

- Ion Torrent
 - GeneStudio S5 Prime

High-throughput sequencing

	Sanger ABI
Run time sequencer	96 samples / hour
Through put	5 *10 ⁵ x 500 bp ↓ 250M bp / year!
Max sequence length	500 bp
Analysis time	15 min sample

Data Analysis

Library preparation

platform specific adapter ligation / primers to (c)DNA fragments

Barcoding > multiplex advantages

Data Analysis

Single Index Illumina Library

Sequence of intererest

Single index Paired End Sequencing

Single index Paired End Sequencing

Illumina MiSeq

Data Analysis

Emulsion PCR

clonal amplification of DNA fragments

Emulsion PCR

Preferably 1cpb (clonal amplification)

No product

Also possible: • 1 copy, \geq 2 beads

Data Analysis

Semiconductor Sequencing chip

Ion Torrent Semiconductor sequencing

Template

Fast (real time) Direct Detection

 $DNA \rightarrow Ions \rightarrow Sequence$

- Nucleotides flow sequentially over Ion semiconductor chip
- One sensor per well per sequencing reaction
- Direct detection of natural DNA extension, no camera's
- Millions of sequencing reactions per chip
- Fast detection, fast cycle time, real time detection

Sequencing Workflow

The signal strength is proportional to the number of nucleotides incorporated

Key: TCAG for signal calibration and normalization

GeneStudio S5[™] Sequencer

Summary NGS techniques

- Single Molecule: PacBio & Oxford Nanopore
 - > Sequencing by terminators vs detection by ΔV
- Clonally amplified DNA: Illumina & Ion Torrent
 - Sequencing by terminators vs synthesis

Data analysis

Same dataset,

different pipelines

Connect the dots

Connect the dots

Impossible to assemble / align manually

Applications Next Generation Sequencing

- Genome sequencing
- Epigenome sequencing
- Metagenome sequencing
- Transcriptome sequencing

Single Cell sequencing

Applications Next Generation Sequencing

- Genome sequencing
- Epigenome sequencing
- Metagenome sequencing
- Transcriptome sequencing

Single Cell sequencing

Genome sequencing:

- De novo sequencing
- Whole Genome / Exome Sequencing
- Targeted resequencing Amplicons
 - Hybridisation captures

Genome sequencing:

- De novo sequencing
- WGS

S.Porter, www.geospiza.com

Genome sequencing:

- Whole Exome Sequencing
- Targeted resequencing

- \checkmark selected gene panels,
- \checkmark mutation analysis (SNPs, low frequent mutations etc),
- ✓ structural variation (deletions, insertions, inversions, CNVs)
- ✓ mitochondrial sequencing

Hybridization target capture

(Multiplex) Amplicon sequencing

Read Coverage: Captures are not uniform

Summary genome sequencing

- De novo sequencing
- Whole Genome
- Exome Sequencing
- Targeted resequencing

Pause

Applications Next Generation Sequencing

- Genome sequencing
- Epigenome sequencing
- Metagenome sequencing
- Transcriptome sequencing

Single Cell sequencing

Metagenome Sequencing

Applications Next Generation Sequencing

- Genome sequencing
- Epigenome sequencing
- Metagenome sequencing
- Transcriptome sequencing

Single Cell sequencing

Epigenome sequencing

Epigenetics: bridge between "nature" and "nurture"

Epigenetics is involved in:

- (in)activation of genes during development
- X-chromosome inactivation in females
- Genomic imprinting (parent specific active alleles)

• (in)activation of genes under influence of the genetics / environment

NGS approaches Epigenetics

- DNA-methylation
- Histon modifications
- Chromatin remodelling

- DNA-methylation
- Histon modifications
- Chromatin remodelling

- DNA-methylation
- Histon modifications
- Chromatin remodelling

Most common Histone modifications:

- Acetylation
- Phosphorylation
- Methylation
- Ubiquitylation

- ChIP seq

Peter Henneman © 2017ç

Chromatin Immuno Precipitation (ChIP) Sequencing

Antibody against e.g. H3k27Ac

Sequencing

Crosslinking

Mapping

Peter Henneman © 2017

- DNA-methylation
- Histon modifications

Chromatin Accessibility

Chromatin interactions: Hi-C

Crosslink DNA N CELL NUCLEUS N CELL NUCLEUS

Mind the tissue but <u>cell cycle</u> as well !!

Summary Epigenetics approaches and techniques

- DNA-methylation
- Histon modifications
- Chromatin remodelling

Important confounding factors / bias in Epigenetic studies

Biological:

- Age
- Gender
- Tissue (cell mixture)

Technical:

- Batch
- Passage (cell culture)
- Medium (cell culture)

Epigenetic change

Applications Next Generation Sequencing

- Genome sequencing
- Epigenome sequencing
- Metagenome sequencing
- Transcriptome sequencing

Single Cell sequencing

Relative abundance of RNA species

Relative abundance of RNA species

What kind of RNA have I isolated?

Approaches for transcriptome sequencing

Gene expression	Target poly(A) mRNAs (enrich or selectively amplify).
Alternative splicing	Target exon/intron boundaries by either doing long read sequencing $(>300 \text{ bp})$ or paired end read sequencing $(\ge 2 \times 100)$.
miRNA (small RNAs)	Target short reads using size selection purification because miRNAs are in the 18-23 bp range.
Non-coding RNA	Directional RNA sequencing is critical (strand-specific)
Anti-sense RNA	Consider combining mRNA expression with directional RNA sequencing
Single cell RNA	Critical challenge is the technical noise created by amplification.

Preparing RNA for next generation sequencing

The core steps in preparing RNA (or DNA) for NGS analysis are:

> RNA isolation: kit used, maintaining integrity and complexity

converting target to double-stranded DNA

 \succ fragmenting and/or sizing the target sequences to a desired length

 \succ attaching oligonucleotide adapters to the ends of target fragmonts

Section & Lagr Section & Lagr Direct RNA seq with Oxford Nanopore for full length transcripts Direct RNA seq with Oxford Nanopore for full length transcripts quantitating the final library product for

Dependency of recovered reads on library prep protocol

Dependency of recovered RNA biotypes on library prep protocol

Summary transcriptome sequencing

- Which RNA,
 - tissue quality and quantity
 - isolation kit
 - library prep kit
 - sequencing platform

Applications Next Generation Sequencing

- Genome sequencing
- Epigenome sequencing
- Metagenome sequencing
- Transcriptome sequencing

Single Cell sequencing

Single Cell biology impacts most areas of research

Scaling Single Cell Transcriptomics

V Svensson, <u>R Vento-Tormo</u>, <u>SA Teichmann</u> https://arxiv.org/abs/1704.01379

Single Cell Isolation, approaches and sequencing

By Kierano - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=6320266 6

Technical possibilities in Single Cell Seq

Single Cell Genomics

Copy Number Variation

Single Cell Transcriptomics

- : Gene Expression Profiling
- Gene Immune Profiling (& Cell Surface Protein (cell hashing)) ٠
- Gene Immune Profiling (& Antigen Specificity)

Single Cell Epigenomics

Chromatin Accessibility (ATAC)

Spatial Transcriptomics

Spatial Gene Expression Profiling

Why Single Cell (mRNA) sequencing?

Protein expression is proportional to gene transcription

Individual cells behave differently from the average of many cells

Individual cells behave differently from the average of many cells

Pooled cell data can be misleading

A, B fully correlated

Pooled cell data can be misleading

Gene A

A, B fully correlated

Pooled cell data can be misleading

Single Cell Seq adds level of detail

Technical requirements for Single Cell sequencing

• Single cell suspension at high enough concentration

- > No aggregates / clumping
- No doublets
 - \circ FACS
 - Dnase / trypsin treatment
 - o Cell strainer

• As little manipulation time as possible

- Viability cells
- > Avoiding pertubation of transcriptomal profiles in RNA expression

Nanoliter protocols

technical and cost efficient

Single Cell Capture Amsterdam UMC

- FACS
- Chromium Controller, 10X Genomics

Table 1 Brief overview of scRNA-seq approaches

		FA	NCS		micro			luidics		
Protocol example	SMART-seq2	MATQ-seq	MARS-seq	CEL-seq	C1 (SMARTer)	DROP-seq	InDrop	Chromium	SEQ-well	SPLIT-seq
Transcript data	Full lenght	Full lenght	3'end counting	3'end counting	Full lenght	3'end counting	3'end counting	3'end counting	3'end counting	3'end counting
Platform	Plate-based	Plate-based	Plate-based	Plate-based	Microfluidics	Droplet	Droplet	Droplet	Nanowell array	Plate-based
Throughput (≄cells)	10 ² -10 ³	10 ³ -10 ⁴	10 ³ -10 ⁵							
Typical read depth (per cell)	106	106	10 ⁴ -10 ⁵	10 ⁴ -10 ⁵	106	10 ⁴ -10 ⁵	104			
Reaction volume	microliter	microliter	microliter	nanoliter	nanoliter	nanoliter	nanoliter	nanoliter	nanoliter	microliter

Single Cell Capture Amsterdam UMC

• FACS

• Chromium Controller, 10X Genomics

Reversed Transcription ----> cDNA ----> Library preparation ----> Sequencing

Single Cell Capture Amsterdam UMC

• FACS

• Chromium Controller, 10X Genomics

Chromium Single Cell Solution 10x Genomics

10X Microfluidics droplet encapsulation

10x GemCode[™] Technology for Single Cell Partitioning

10X Microfluidics droplet encapsulation

10X 3'-expression library

10X 3'-expression library

10X 3'-expression library

Cell Ranger

10× GENOMICS

Major populations of PBMCs are detected

TSNE1

Single Cell data analysis

Top differentially expressed genes per cell cluster (UMI counts/cell)

Gene name	Cluster 1	Cluster 2	Cluster 3
Abc1	28.52	0.03	14.7
Xyz2	4.56	8.33	30.85
Fgh3	8.94	17.44	1.27

Technical possibilities in Single Cell Seq

Single Cell Genomics

Copy Number Variation

Single Cell Transcriptomics

- Gene Expression Profiling (& Cell Surface Protein (cell hashing))
- Gene Expression CRISPR
- Gene Immune Profiling (& Cell Surface Protein (cell hashing))
- Gene Immune Profiling (& Antigen Specificity)

Single Cell Epigenomics

Chromatin Accessibility (ATAC)

Spatial Transcriptomics

Spatial Gene Expression Profiling

Single-cell genomics

Cell types Molecular signatures

Visium: Spatial Transcriptomics

Section of a fresh frozen tissue on a capture area on a slide.

Fixed, stained and imaged together with a detectable frame

Capture area, coated with an array of barcoded probe spots.

Fixed and stained tissue section on capture area

Permeabilisation of cells, RNA diffuses out of the cells and bind to the probes

cDNA synthesis of captured RNA

Sequencing and data analysis of gene expression and histology

Visium: Spatial Transcriptomics example

Figure 2. Spatially-resolved clustering and expression in the mouse brain. A. A coronal mouse brain section was H&E stained, imaged, then processed through the Visium Spatial Gene Expression workflow. Shown are image overlays containing data for UMI counts (B), total gene count (C), and spatially naïve clustering based on total differentially expressed genes (D). The top genes that are more highly expressed in cluster 4 (green) than any other cluster are shown to the far right.

Other challenges in NGS

- **Bioinformatics**
 - Data analysis
 - Tracking and tracing
 - Interpretation
- Data storage
 - New developments in analysis software
- Logistics
 - pre- post PCR laboratories
 - Data and sample tracking

Acknowledgements

Core Facility Genomics

Clinical Genetics

Lourens Bordewijk Linda Koster Patrick Ruizendaal Suzan Kenter Alex Postma Peter Henneman Elisabeth Lodder

Ingrid Bakker Ted Bradley Lyra Eken Sebastiaan de Vriend Daoud Sie Izabela Krzyzewska Andrew Li Yim

Andrea Venema Adri Mul

Olaf Mook Martin Haagmans

Alex Postma Peter Henneman Erik Sistermans Marcel Mannens <u>KEBB</u>

Barbera van Schaik Aldo Jongejan Perry Moerland Antoine van Kampen

Contact info CFG:

Location VUmc

Visiting address: MF-J379 Telephone: 020-4448351

Location AMC

Visiting address: K2-213 Telephone: 020-5663846

E-mail: cfg@amsterdamumc.nl Website: http://cfg-amsterdamumc.nl

