Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

Graduate School Bioinformatics Sequence Analysis Introduction

Barbera van Schaik

Bioinformatics and Biomedical Computing Epidemiology and Data Science Amsterdam UMC

b.d.vanschaik@amsterdamumc.nl

March 8, 2021

Barbera van Schaik

Welcome

- Scale of sequence data DNA sequencing Genome projects
- Bioinformatics databases and tools
- Databases Sequence analysis
- Handling sequence data
- Computing Application areas

Related Graduate School courses

- DNA technology
- Unix
- Computing in R
- Practical biostatistics
- Advanced biostatistics
- Bioinformatics
- Bioinformatics Sequence Analysis
- Research Data Management

https://www.amc.nl/web/leren/graduate-school.htm

Barbera van Schaik

In this course

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

Bioinformatics Sequence Analysis

You will learn what is behind commonly used **methods for sequence analysis**, how to **analyze datasets** with (reasonably) user-friendly interfaces, and get introduced to **command-line tools** for next generation sequencing (NGS)

Barbera van Schaik

Welcome

- Scale of sequence data DNA sequencing Genome projects
- Bioinformatics databases and tools
- Databases Sequence analysis
- Handling sequence data
- Computing Application areas

Not in this course

- **1** Sequence assembly
- Ø Bisulphite sequencing
- **3** Protein sequence analysis
- 4 Metagenomics

Barbera van Schaik

Welcome

- Scale of sequence data DNA sequencing Genome projects
- Bioinformatics databases and tools
- Databases Sequence analysis
- Handling sequence data
- Computing Application areas

Bioinformatics Sequence Analysis

- 1 Introduction to sequence analysis
- 2 Sequencing techniques
- 3 Brief introduction Linux and R (self study)
- 4 NGS pre-processing
- 6 (Multiple) sequence alignment
- 6 Case: Neuroblastoma
- Introduction to R2
- 8 Exome sequence analysis
- 9 RNAseq
- Single cell RNA sequencing

The focus is on human data, but many techniques are also applicable to other organisms

Barbera van Schaik

Welcome

- Scale of sequence data DNA sequencing Genome projects
- Bioinformatics databases and tools
- Databases Sequence analysis
- Handling sequence data
- Computing Application areas

Practical things

Certificate

- Attend all sessions (one day can be skipped, ask for possibility for self-study)
- Active participation

Course material

 Slides and exercises are published on https://bioinformatics.amc.nl/

Barbera van Schaik

In this hour

Welcome

- Scale of sequence data DNA sequencing Genome projects
- Bioinformatics databases and tools
- Databases Sequence analysis

Handling sequence data

Computing Application areas

Introduction

You will get an indication about the **scale** of sequence data, how to **handle the data**, where to find **publicly available data and tools**, and what can be done with **NGS**

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence dat

Computing Application areas

1 Welcome

2 Scale of sequence data

DNA sequencing Genome projects

Bioinformatics databases and tools Databases

Sequence analysis

Handling sequence data
 Computing
 Application areas

Overview

Barbera van Schaik

Welcome

Scale of sequence data

DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

Sanger

Barbera van Schaik

Welcome

Scale of sequence data

DNA sequencing Genome projects


Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

Automated sequencing

Barbera van Schaik

Welcome

Scale of sequence data

DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

Sequencing centers

Barbera van Schaik

Welcome

Scale of sequence data

DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence dat

Computing Application areas

Next generation sequencing

Sequencer	Ion Torrent PGM [4][31][32]	454 GS FLX ^[9]	HISeq 2000 ^{[4][9]}	SOLIDv4 ^[9]	PacBlo ^{[4][33]}	Sanger 3730xl ^[9]
Manufacturer	Ion Torrent (Life Technologies)	454 Life Sciences (Roche)	IIIumina	Applied Biosystems (Life Technologies)	Pacific Biosciences	Applied Biosystems (Life Technologies)
Sequencing Chemistry	Ion semiconductor sequencing	Pyrosequencing	Polymerase-based sequence- by-synthesis	Ligation-based sequencing	Phospholinked fluorescent nucleotides	Dideoxy chain termination
Amplification approach	Emulsion PCR	Emulsion PCR	Bridge amplification	Emulsion PCR	Single-molecule; no amplification	PCR
Data output per run	100-200 Mb	0.7 Gb	600 Gb	120 Gb	100-700 Mb	1.9~84 Kb
Accuracy	99%	99.9%	99.9%	99.94%	88.0% (>99.9% CCS) ^[34]	99.999%
Time per run	2 hours	24 hours	3-10 days	7-14 days	2-3 hours	20 minutes - 3 hours
Read length	200-400 bp	700 bp	100x100 bp paired end	50x50 bp paired end	5,500-10,000 bp (N50)	400-900 bp
Cost per run	\$350 USD	\$7.000 USD	\$6.000 USD (30x human genome)	\$4.000 USD	\$125-300 USD	\$4 USD (single read/reaction)
Cost per Mb	\$1.00 USD	\$10 USD	\$0.07 USD	\$0.13 USD	\$0.20 - \$3.00 USD	\$2400 USD
Cost per instrument	\$80.000 USD	\$500.000 USD	\$690.000 USD	\$495.000 USD	\$695.000 USD	\$95.000 USD

Table 1. Comparing metrics and performance of next-generation DNA sequences.^[35]

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

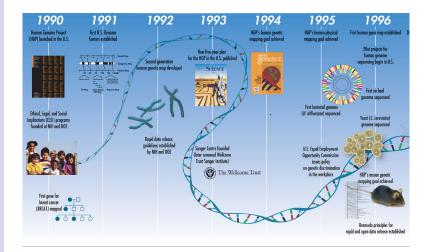
Genome projects

- HGP
- 1000g
- UK10K >100K genomes
- Personal genomes

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects


Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

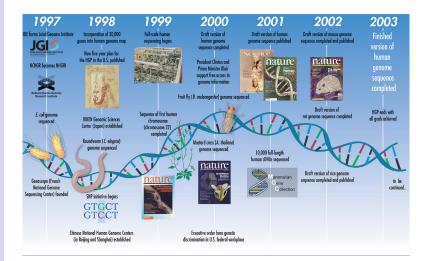
Human Genome Project

http://web.ornl.gov/sci/techresources/Human_Genome/index.shtml

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects


Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence dat

Computing Application areas

Human Genome Project

http://web.ornl.gov/sci/techresources/Human_Genome/index.shtml

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence dat

Computing Application areas

1000 genomes project

	Autosomes	Chromosome X	GENCODE regions*
Samples	1.092	1.092	1.092
Total raw bases (Gb)	19.049	804	327
Mean mapped depth (×)	5.1	3.9	80.3
SNPs			
No, sites overall	36.7 M	1.3 M	498 K
Novelty rate†	58%	77%	50%
No. synonymous/non-synonymous/nonsense	NA	4.7/6.5/0.097 K	199/293/6.3 K
Average no. SNPs per sample	3.60 M	105 K	24.0 K
Indels			
No. sites overall	1.38 M	59 K	1.867
Novelty rate†	62%	73%	54%
No. inframe/frameshift	NA	19/14	719/1.066
Average no. indels per sample	344 K	13 K	440
Genotyped large deletions			
No. sites overall	13.8 K	432	847
Novelty rate†	54%	54%	50%
Average no. variants per sample	717	26	39

NA, not applicable.

* Autosomal genes only.

+ Compared with dbSNP release 135 (Oct 2011), excluding contribution from phase I 1000 Genomes Project (or equivalent data for large deletions).

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

4000 genomes 6000 exomes http://www.uk10k.org/

UK10K

Publications

Managing clinically significant findings in research: the UK10K example Eur J Hum Genet 2014 Jan 15 Kaye et al. PDF

Implementing a successful data-management framework: the UK10K managed access model Genome Med. 2013 Nov. Muddyman et al. PDF

NDUFA4 Mutations Underlie Dysfunction of a Cytochrome c Oxidase Subunit Linked to Human Neurological Disease Cell Rep. 2013 Jun 27. Pitceathly et al. PDF

Approaches to the detection of recessive effects using next generation sequencing data from outbred populations Adv Appl Bioinform Chem. 2013 Jun 11

Adv Appl Bioinform Chem. 2013 Jun 11. Curtis, D PDF

Mutations in *BICD2* Cause Dominant Congenital Spinal Muscular Atrophy and Hereditary Spastic Paraplegia Am J Hum Genet. 2013 May 9. Oates and Rossor et al.

PDF

Combined NGS Approaches Identify Mutations in the Intraflagellar Transport Gene IFT140 in Skeletal Ciliopathies with Early Progressive Kidney Disease Hum Mutat, 2013 May,

Schmidts et al.

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

The 100K genomes project

The project will focus on patients with a rare disease and their families and patients with cancer. The first samples for sequencing are being taken from patients living in England with discussions taking place with Scotland, Wales and Northern Ireland about potential future involvement. . http://www.genomicsengland.co.uk/

Barbera van Schaik

Genome projects

Personal Genome Proiect

Personal genomes

Sharing Personal Genomes

The Personal Genome Project was founded in 2005 and is dedicated to creating public genome, health, and trait data. Sharing data is critical to scientific progress, but has been hampered by traditional research practices—our approach is to invite willing participants to publicly share their personal data for the greater good.

About - Participate - Global Network - Support

Why participate?

Donating your genome and health data to science is a

great way to enable advances in understanding

human genetics, biology, and health. We seek

volunteers willing to donate diverse personal

information to become a public resource.

Open Data

Open data is a critical component of the scientific method, but genomes are both identifiable and predictive. As a result, many studies choose to withhold data from participants and restrict access to researchers. The PGP's public data is a common ground to collaborate and improve our understanding of genomes.

Learn about participating

Use PGP data »

Global Network

The pilot group for the Personal Genome Project has been based at Harvard, but we are a global group, with projects starting around the world.

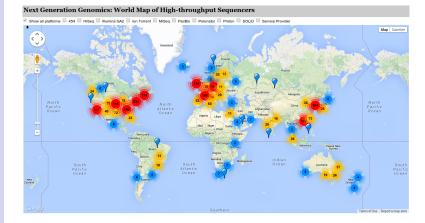
Meet our PGP groups >

100.000 genomes plus medical records http://www.personalgenomes.org/

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects


Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence dat

Computing Application areas

Sequencers around the world

http://omicsmaps.com/

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence dat

Computing Application areas

Sequencers around the world 2015

Next Generation Genomics: World Map of High-throughput Sequencers

Show all platforms 🛛 454 🗍 HiSeg 🗌 HiSeg X Ten 📄 Illumina GA2 📄 Ion Torrent 🗍 MiSeg 🔤 MinION 📄 NextSeg 📄 PacBio 📄 Polonator 📄 Proton 📄 SOLID 📄 Service Provider

http://omicsmaps.com/

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

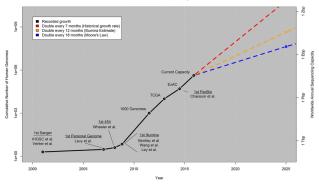
Handling sequence data

Computing Application areas

Big data

Barbera van Schaik

Welcome


- Scale of sequence data DNA sequencing Genome projects
- Bioinformatics databases and tools
- Databases Sequence analysis

Handling sequence dat

Computing Application areas

DNA sequencing rate

Growth of DNA Sequencing

Stephens et al. (2015) PLoS One

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

GenBank, EMBL and DDBJ

International Nucleotide Sequence Database Collaboration Daily exchange of sequence data

https://www.ncbi.nlm.nih.gov/ https://www.ebi.ac.uk/ http://www.ddbj.nig.ac.jp/

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

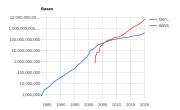
Nucleotide sequence databases

From: http://www.davelunt.net/

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects


Bioinformatics databases and tools

Databases Sequence

analysis

Handling sequence dat

Computing Application areas

https://www.ncbi.nlm.nih.gov/genbank/statistics/ GenBank has doubled approximately every 18 months

${\sf GenBank}$

Release 236 (Feb 2020)

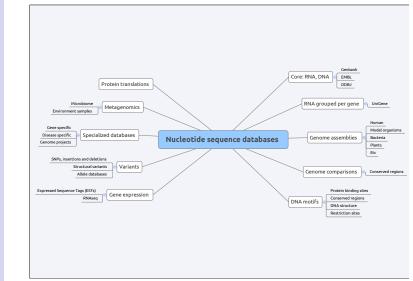
has 399,376,854,872 base pairs from 216,214,215 sequences. In addition, there are 1,206,720,688 WGS records containing 6,968,991,265,752 base pairs of sequence data.

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools


Databases

Sequence analysis

Handling sequence dat

Computing Application areas

Core databases and derivatives

Barbera van Schaik

Welcome

- Scale of sequence data DNA sequencing Genome projects
- Bioinformatics databases and tools
- Databases
- Sequence analysis

Handling sequence data

Computing Application areas

Where to start?

You are here: NAR Journal Home » Database Summary Paper Categories

NAR Database Summary Paper Category List

- Nucleonide Sequence Databases RNA sequence databases Protein sequence databases Structure Databases Genomics Databases (non-vertebrate) Metabolic and Signaling Pathways Human and other Venetonale Genomes Human Genes and Diseases Human and and other Gene Expression Databases Proteomics Resources Organele databases Immunological databases Collebiology
- https://www.oxfordjournals.org/nar/database/c/

- Compilation Paper
- Category List
- Alphabetical List
- Category/Paper List
- Search Summary Papers

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases

Sequence analysis

Handling sequence dat

Computing Application areas

Sequence alignment

- Needleman-Wunsch
- Smith-Waterman
- BLAST
- BLAT
- ClustalW
- BWA, BFAST, Bowtie, Tophat, etc, etc

Sequence analysis

Sequence suites/packages

- Emboss package
- CLCbio workbench
- Galaxy
- R Bioconductor

Hundreds of tools to analyse sequence data...

Barbera van Schaik

Tools

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases

Sequence analysis

Handling sequence data

Computing Application areas

Volume 47, Issue W1 02 July 2019

Comments (0)

Next >

Editorial: The 17th Annual Nucleic Acids Research Web Server Issue 2019 🖯

Nucleic Acids Research, Volume 47, Issue W1, 02 July 2019, Pages W1–W4, https://doi.org /10.1093/nar/gkz521 Published: 28 June 2019

PDF ■ Split View 💪 Cite 🔎 Permissions 🔩 Share 🕶

Issue Section: Editorial

The 2019 Web Server Issue of Nucleic Acids Research is the 17th in a series of annual issues dedicated to web-based software resources for analysis and visualization of molecular biology data. It is freely available online under NAR's open access policy. This year, 33 proposals were submitted and 122, or 37%, were approved for manuscript submission. Of those approved, 94, or 77%, were ultimately accepted for publication. Table 1 lists the 2019 Web Servers, their URLs and a brief description of each.

https://academic.oup.com/nar/article/47/W1/W1/5524725

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

```
Bioinformatics
databases and
tools
```

```
Databases
```

```
Sequence
analysis
```

```
Handling sequence da
```

```
Computing
Application
areas
```

Most tools are only available via the command-line (on linux systems)

Tools

File Edit View Search Terminal Help

```
echo "### align sequences with bwasw ###"
./bwa-0.7.12/bwa mem ${ref} ${mydir}/${prefix}.fastg.gz ${bwa param} > ${prefix}
-${refprefix}.sam
# ./bwa-0.7.12/bwa mem -B 1 -T 20 ${ref} ${mvdir}/${prefix}.fastq.gz > ${prefix}
-${refprefix}.sam # keep alignments with lower score
wait
echo "### replace nucleotides that are identical with = ###"
samtools calmd -eS ${prefix}-${refprefix}.sam ${ref} > ${prefix}-${refprefix}-e.
sam
wait
rm -f ${prefix}-${refprefix}.sam # REMOVE TMP FILE
echo "### fix CIGAR string KEEP THIS FILE ###"
java -Djava.io.tmpdir=./tmp -jar picard-tools-1.126/picard.jar CleanSam I=${pref
ix}-${refprefix}-e.sam 0=${prefix}-${refprefix}-e-clean.sam
wait
rm -f ${prefix}-${refprefix}-e.sam
echo "### convert sam to bam ###"
iava -Diava.io.tmpdir=./tmp -jar ./picard-tools-1.126/picard.jar SamFormatConver
ter I=${prefix}-${refprefix}-e-clean.sam 0=${prefix}-${refprefix}.bam
wait
```

Barbera van Schaik

Open source

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases

Sequence analysis

Handling sequence data

Computing Application areas

Free as in freedom

You can use, change, integrate, and review the code Open source allows sharing and promotes collaboration No vendor lock-in

Barbera van Schaik

Welcome

- Scale of sequence data DNA sequencing Genome projects
- Bioinformatics databases and tools
- Databases
- Sequence analysis
- Handling sequence data
- Computing Application areas

- Software
- Databases
- Journals
- Standards

https://en.wikipedia.org/wiki/Open_source

Open source

- Hardware
- Art
- Money
- Drinks
- Medicine
- Fashion
- Education

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

Handling sequence data

Small cluster

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

Buy a bigger cluster (centralized model)

Barbera van Schaik

Welcome

- Scale of sequence data DNA sequencing Genome projects
- Bioinformatics databases and tools
- Databases Sequence analysis

Handling sequence data

Computing Application areas

Dutch life science grid

http://surfsara.nl/

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence dat

Computing Application areas

Cloud computing

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

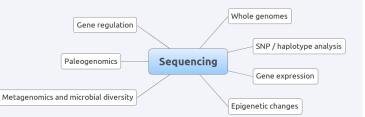
HPC cloud at SurfSara

You will use a linux environment that runs on the HPC cloud to get acquainted with command-line tools

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects


Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence dat

Computing Application areas

NGS application areas

Barbera van Schaik

Welcome

- Scale of sequence data DNA sequencing Genome projects
- Bioinformatics databases and tools
- Databases Sequence analysis

Handling sequence data

Computing Application areas

Whole genomes

- De novo sequencing
- Re-sequencing
- Copy number variations
- Rearrangements
- New insertions/deletions/mutations

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence dat

Computing Application areas

Human DNA **BAC** /Fosmid vector Mapped end-Soan > mean +3 s.d. Span > mean -3 s.d Inverted orientation sequence pairs reference genome Human test genome Deletion Insertion Inversion Genomic libraries are constructed from fragmented DNA and subcloned into circular vectors such as BACs or fosmids. The ends of these fragment inserts are directly sequenced from universal vector primers near the subcloning site (arrows) and are termed end-sequence pairs or paired-end sequences. End-sequence pairs are mapped to their best location in the human reference genome sequence assembly. End-sequence pairs that are discordant in terms of length (> 3 s.d. from the mean insert length) and/or orientation when mapped against the reference genome assembly may be indicative of deletions, insertions or inversion, as indicated (red, blue and green, respectively). End-sequence pairs consistent in terms of length and orientation are shown as grey.

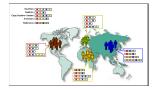
The Human Genome Structural Variation Working Group, Nature 2007

Structural variation

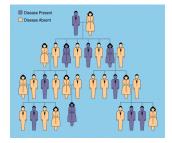
Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

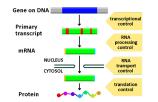

Bioinformatics databases and tools

Databases Sequence analysis


Handling sequence dat

Computing Application areas

Linkage studies Forensic research


SNP / haplotype analysis

Barbera van Schaik

Welcome

- Scale of sequence data DNA sequencing Genome projects
- Bioinformatics databases and tools
- Databases Sequence analysis
- Handling sequence dat
- Computing Application areas

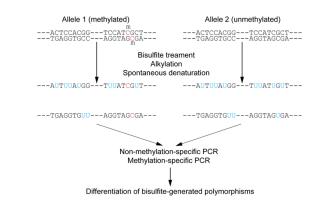
https://en.wikipedia.org/wiki/Regulation_ of_gene_expression

Gene expression

- Full-length transcripts
- EST sequencing
- 5' transcript ends (5'-RATE, CAGE)
- SAGE ditag sequencing
- SAGE-like 3' end sequencing
- Nebulized fragments
- ncRNA sequencing

Barbera van Schaik

Welcome


Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence dat

Computing Application areas

Epigenetics

Treatment with sodium bisulfite Unmethylated cytosines change into uracil Methylated cytosines are unchanged Compare sequences with reference sequence

Barbera van Schaik

Welcome

- Scale of sequence data DNA sequencing Genome projects
- Bioinformatics databases and tools
- Databases Sequence analysis

Handling sequence dat

Computing Application areas

Metagenomics and microbial diversity

Study genomic content in a complex mixture of microorganisms (bacteria or viruses in some environment) Identify new species

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

Paleogenomics

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects © 2007 Nature Publishing

gdu

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

Gene regulation

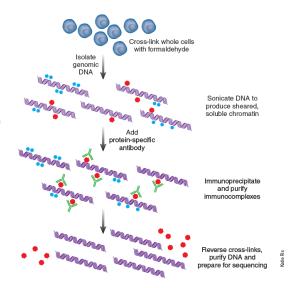
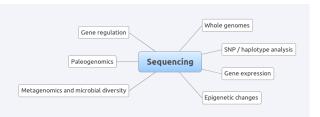


Figure 1 | Workflow of Chip-seq. DNA and proteins are cross-linked and purified; then bound DNA is analyzed by massively parallel short-read sequencing.

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects


Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

Sequence analysis

Usually starts with sequence alignment or sequence assembly Depending on the application other tools/methods are used or developed

Barbera van Schaik

Welcome

Scale of sequence data DNA sequencing Genome projects

Bioinformatics databases and tools

Databases Sequence analysis

Handling sequence data

Computing Application areas

With a click of a button...

.. or perhaps not. You will find out during this course. Computer exercises sequence analysis:

- Via web tools
- 2 Creating pipelines online

3 With command-line tools in a Linux environment

Barbera van Schaik

Welcome

- Scale of sequence data DNA sequencing Genome projects
- Bioinformatics databases and tools
- Databases Sequence analysis

Handling sequence data

Computing Application areas

Bioinformatics Sequence Analysis

- Introduction to sequence analysis
- 2 Sequencing techniques
- **3** Brief introduction Linux and R (self study)
- 4 NGS pre-processing
- 6 (Multiple) sequence alignment
- 6 Case: Neuroblastoma
- Introduction to R2
- 8 Exome sequence analysis
- 9 RNAseq
- In Single cell RNA sequencing