Barbera van Schaik

Introduction

Overview

Feature-level comparison

Input data features Variation and errors Alignments

Discussion

AMC Graduate School Bioinformatics Sequence Analysis Alignment of nextgen sequences

Barbera van Schaik

Bioinformatics and Biomedical Computing Epidemiology and Data Science Amsterdam UMC

b.d.vanschaik@amsterdamumc.nl

March 09, 2021

Barbera van Schaik

Introduction

Overview

Feature-level comparison

Input data features Variation and errors Alignments

Discussion

NGS aligners

This presentation is based on the following review

BIOINFORMATICS REVIEW

Vol. 28 no. 24 2012, pages 3169–3177 doi:10.1093/bioinformatics/bts605

Sequence analysis

Advance Access publication October 11, 2012

Tools for mapping high-throughput sequencing data

Nuno A. Fonseca^{*}, Johan Rung, Alvis Brazma and John C. Marioni EMBL Outstation, European Bioinformatics Institute (EBI), Hinxton, Cambridge CB10 ISD, UK Associate Editor: Jonathan Wren

http://wwwdev.ebi.ac.uk/fg/hts_mappers/

The problem

Schaik Introduction

NGS alignment

Barbera van

Overview

Feature-level comparison

Input data features Variation and errors Alignments

Discussion

- 100 million 1 billion reads in 7-15 days
- Sequence reads are relatively short
- Previous alignment methods too slow
- Exploit technological developments (different type of sequencers)
- Support different protocols (single-end, paired-end)

Barbera van Schaik

Introduction

Overview

Feature-level comparison

Input data features Variation and errors Alignments

Discussion

Goal of a sequence aligner

Formal description

- given a set of sequences Q
- a set of reference sequences R
- a set of constraints and a distance threshold K
- find all substrings m of R that follow the constraints and are within a distance k to a sequence q in Q
- d(q,m) = k, where d() is a distance function
- Occurrences of *m* in *R* are called *matches*

Barbera van Schaik

Introduction

Overview

Feature-level comparison

Input data features Variation and errors Alignments

Discussion

Goal of a sequence aligner

In normal English

- The reads need to be aligned to a reference dataset
- Find the true location of a read in the reference
- Allow for errors and structural variation (in-exact matching)

Barbera van Schaik

Introduction

Overview

Feature-level comparison

Input data features Variation and errors Alignments

Discussion

NGS sequence aligners

Barbera van Schaik

Introduction

Overview

Feature-level comparison

Input data features Variation and errors Alignments

Discussion

More than 60 mappers are available, most of them developed after 2008 $_{\text{Fonseca et al}}\left(^{2012} \right)$

Time line

Barbera van Schaik

Introduction

Overview

Feature-level comparison

Input data features Variation and errors Alignments

Discussion

Which one to use for your project?

Starting point

Schaik Introduction

NGS alignment

Barbera van

Overview

- Feature-level comparison
- Input data features Variation and errors Alignments
- Discussion

- What is the NGS application? (DNA, RNA, miRNA, bi-sulfite)
- What is the data type? (single, paired-end)
- Which sequencer brand was used?
- How long should the analysis take?
- How accurate does the alignment need to be?
- Can the output be used in follow-up analysis steps?

Barbera van Schaik

Introduction

3170

Overview

Feature-level comparison

Input data features Variation and errors

Discussion

Overview 1/2

Data			Input format		Open source / commercial				Reference	
Table 1. List of mappers		Sequencing platform		Output format		Times cite			d	
Mapper	Data	Seq.Plat.	Input	Output	Avail.	Version	Cit.	Convine Tears	Reference	
BFAST	DNA	I,So,4, Hel	(C)FAST(A/Q)	SAM TSV	OS	0.7.0	94	37.11	Homer et al. (2009)	
Bismark	Bisulphite	I	FASTA/Q	SAM	OS	0.7.3	7	6.21	Krueger and Andrews (2011)	
BLAT	DNA	N	FASTA	TSV BLAST	OS	34	2844	275.67	Kent (2002)	
Bowtie	DNA	I,So,4,Sa,P	(C)FAST(A/Q)	SAM TSV	OS	0.12.7	1168	363.42	Langmead et al. (2009)	
Bowtie2	DNA	I,4,Ion	FASTA/Q	SAM TSV	OS	2.0beta5		0.00	Langmead and Salzberg (2012)	
BS Seeker	Bisulphite	1	FASTA/Q	SAM	OS		19	9.26	Chen et al. (2010)	
BSMAP	Bisulphite	1	FASTA/Q	SAM TSV	OS	2.43	31	11.06	Xi and Li (2009)	
BWA	DNA	I.So.4.Sa.P	FASTA/Q	SAM	OS	0.6.2	738	224.20	Li and Durbin (2009)	
BWA-SW	DNA	I,So,4,Sa,P	FASTA/Q	SAM	OS	0.6.2	160	67.69	Li and Durbin (2010)	
BWT-SW	DNA	N	FASTA	TSV	OS	20070916	45	10.42	Lam et al. (2008)	
CloudBurst	DNA	N	FASTA	TSV	OS	1.1	146	46.97	Schatz (2009)	
DynMap	DNA	N	FASTA	TSV	OS	0.0.20		0.00	Flouri et al. (2011)	
ELAND	DNA	1	FASTA	TSV	Com	2	7	1.09	Unpublished ^a	
Exonerate	DNA	N	FASTA	TSV	OS	2.2	255	34.69	Slater and Birney (2005)	
GEM	DNA	I, So	FASTA/Q	SAM, counts	Bin	Lx	4	1.35	Unpublished ^b	
GenomeMapper	DNA	1	FASTA/Q	BED TSV	OS	0.4.3	31	11.66	Schneeberger et al. (2009)	
GMAP	DNA	I,4,Sa,Hel,Ion,P	FASTA/Q	SAM, GFF	OS	2012-04-27	217	29.52	Wu and Watanabe (2005)	
GNUMAP	DNA	I	FASTA/O Illumina	SAM TSV	OS	3.0.2	15	5.73	Clement et al. (2010)	
GSNAP	DNA	I.4.Sa,Hel.Ion,P	FASTA/Q	SAM	OS	2012-04-27	72	31.61	Wu and Nacu (2010)	
MapReads	DNA	So	FASTA/Q	TSV	OS	2.4.1		0.00	Unpublished ²	
MapSplice	RNA	1	FASTA/Q	SAM BED	OS	1.15.2	50	28.17	Wang et al. (2010)	
MAQ	DNA	I,So	(C)FAST(A/Q)	TSV	OS	0.7.1	957	251.66	Li et al. (2008a)	
MicroRazerS	miRNA	N	FASTA	SAM TSV	OS	0.1	7	2.75	Emde et al. (2010)	
MOM	DNA	1.4	FASTA	TSV	Bin	0.6	18	5.55	Eaves and Gao (2009)	
MOSAIK	DNA	I,So,4,Sa,Hel,Ion,P	(C)FAST(A/Q)	BAM	OS	2.1	4	1.18	Unpublished ^d	
mrFAST	miRNA	1	FASTA/Q	SAM	OS	2.1.0.4	158	58.34	Alkan et al. (2009)	
mrsFAST	miRNA	I,So	FASTA/Q	SAM	OS	2.3.0	32	18.03	Hach et al. (2010)	
Mummer 3	DNA	N	FASTA	TSV	OS	3.23	683	81.58	Kurtz et al. (2004)	
Novoalign	DNA	I,So,4,Ion,P	(C)FAST(A/Q) Illumina	SAM TSV	Bin	V2.08.01	137	34.49	Unpublished ^e	
PASS	DNA	1,So,4	(C)FAST(A/Q)	SAM GFF3 BLAST	Bin	1.62	45	13.67	Campagna et al. (2009)	
Passion	RNA	I,4,Sa,P	FASTA/Q	BED	OS	1.2.0		0.00	Zhang et al. (2012)	
PatMaN	miRNA	N	FASTA	TSV	OS	1.2.2	38	9.36	Prüfer et al. (2008)	
PerM	DNA	I,So	(C)FAST(A/Q)	SAM TSV	OS	0.4.0	30	10.88	Chen et al. (2009)	
ProbeMatch	DNA	L4.Sa	FASTA	ELAND	OS		6	1.92	Kim et al. (2009)	

(continued)

Barbera van Schaik

Introduction

Overview

Feature-level comparison

Input data features Variation ar errors

Discussion

Overview 2/2

Table I. Continued

Mapper	Data	Seq.Plat.	Input	Output	Avuil.	Version	Cit.	Ceations Tears	Reference
QPALMA	RNA	1.4	Specific	TSV	OS	0.9.2	75	21.11	De Bona et al. (2008)
RazerS	DNA	1.4	FASTQ	TSV ELAND	OS	1.1	58	20.17	Weese et al. (2009)
REAL	DNA	T. T	FASTA/Q	TSV	OS	0.0.28		0.00	Frousios et al. (2010)
RMAP	DNA	I,So,4	(C)FAST(A/Q)	BED	OS	2.05	162	38.27	Smith et al. (2008)
RNA-Mate	RNA	So	CFASTA	BED Counts	OS	1.1	28	10.04	Cloonan et al. (2009)
RUM	RNA	1.4	FASTA/O	SAM TSV BED	OS	1.11	2	2.36	Grant et al. (2011)
SeqMap	DNA	T. T	FASTA	ELAND	OS	1.013	142	37.34	Jiang and Wong (2008)
SHRiMP	DNA	I,So,4,Hel	(C)FAST(A/Q)	TSV	OS	1.3.2	155	50.91	Rumble et al. (2009)
SHRiMP 2	DNA	I,So,4	FASTA/Q	SAM	OS	2.2.2	15	11.76	David et al. (2011)
Slider	DNA	1	Illumina	TSV	OS	0.6	39	10.98	Malhis et al. (2009)
Slider II	DNA	1	Illumina	TSV	OS	1.1	16	7.25	Malhis and Jones (2010)
Smalt	DNA	I.4.Sa.Ion,P	FASTA/Q	SAM	OS	0.6.1		0.00	Unpublished
SOAP	DNA	1	FASTA/Q	TSV	OS	1.11	451	104.41	Li et al. (2008b)
SOAP2	DNA	1	FASTA/Q	SAM TSV	OS	2.21	294	99.38	Li et al. (2009b)
SOAPSplice	RNA	1.4	FASTA/Q	TSV	Bin	1.8	3	3.54	Huang et al. (2011a)
SOCS	DNA	So	(C)FAST(A/Q)	TSV	OS	2.1.1	49	14.15	Ondov et al. (2008)
SpliceMap	RNA	1	FASTA/Q	SAM BED	OS	3.3.5.2	63	29.80	Au et al. (2010)
SSAHA	DNA	N	FASTA/Q	TSV	OS	3.1	483	42.29	Ning et al. (2001)
SSAHA2	DNA	1,4,Sa	FASTA/Q	SAM	Bin	2.5.5	483	44.99	Ning et al. (2001)
Stampy	DNA	1	FASTA/Q	SAM TSV	Bin	1.0.16	26	16.19	Lunter and Goodson (2011)
Supersplat	RNA	N	FASTA	TSV	OS	1.0	21	9.93	Bryant Jr et al. (2010)
TopHat	RNA	1	FASTA/Q, GFF	BAM	OS	1.4.1	389	121.04	Trapnell et al. (2009)
VMATCH	DNA	N	FASTA	TSV	Bin		26	2.75	Unpublished ⁸
WHAM	DNA	N	FASTQ	SAM	OS	0.1.4	3	3.33	Li et al. (2011)
X-Mate	DNA	I,So,4	(C)FAST(A/Q)	SAM BED Counts	OS	1	1	0.74	Wood et al. (2011)
ZOOM	DNA	I,So,4	(C)FAST(A/Q)	SAM BED GFF	Com	1.5	109	28.66	Lin et al. (2008)

The Dia continuitation whether the requests in submit for 1990e, NLN, mRNA, mR

^bMapReade SOLiD System Color Space Mapping Tool.

"The Vinatch large scale sequence analysis software.

⁴Mosaik 1.0 documentation

www.novocraft.com

5MALT Manual 7GEM-GEnomic Multi-tool

3171

Barbera van Schaik

Introduction

Overview

Feature-level comparison

Input data features Variation and errors Alignments

Discussion

Choices based on sequencing platform

General mappers

- BLAST, BLAT, SSAHA, Exonerate, Mummer
- Align any sequence (DNA, RNA, protein)
- Note that BLAST and BLAT are too slow for large sequence experiments

Platform support

- Not every mapper supports SOLiD, these do: SOCS, RNA-Mate, MapReads, BWA, BFAST
- Illumina: Supported by most aligners, some take Illumina specific errors into account, e.g. SOAP, Bowtie, Novoalign trim low quality bases at the end of the reads

Features

NGS alignment

Barbera van Schaik

Introduction

Overview

Feature-level comparison

Input data features

errors Alignments

Discussion

Data-centric

- Read length limits
- Read pairing information
- Parallel processing

Alignment sensitivity and reporting

- Errors allowed
- Support for gaps
- Alignments reported
- Type of alignment
- Usage of read quality information

Barbera van Schaik

Introduction

Overview

Feature-level comparison

Input data features Variation and errors Alignments

Discussion

Short reads

e.g. miRNAs (16-30 bp) Supported by the miRNA specific aligners, and also: Bowtie, BWA, GNUMAP, MapReads, Maq, Novoalign, SHRiMP, Stampy, SOAP

Read length limits

Long reads e.g. Roche, PacBio sequencing: BLAT, RazerS, BWA-SW, SOAP2, RUM, RMAP, SOAPSplice, Bowtie2

Barbera van Schaik

Introduction

Overview

Feature-level comparison

Input data features

Variation an errors Alignments

Discussion

Read pairing information

The Human Genome Structural Variation Working Group, Nature 2007

Barbera van Schaik

Aligning read pairs

Introduction

Overview

Feature-level comparison

Input data features

Variation and errors Alignments

Discussion

- Often both ends are aligned individually
- Distance between the mapped ends can identify insertions and deletions
- Supported by more than half of the sequence aligners

Barbera van Schaik

Introduction

Overview

Feature-level comparison

Input data features

Variation and errors Alignments

Discussion

Parallel processing

Data parallelism and using multiple CPU's at the same time.

17 / 28

Barbera van Schaik

Introduction

Overview

Feature-level comparison

Input data features

Variation and errors Alignments

Discussion

Using base quality scores

- Using quality scores can reduce alignment errors
- Lower penalties are given to mismatches with bases of low quality
- Used by several aligners, e.g. Bowtie, BWA, GEM-Mapper, PASS, SHRiMP2, ZOOM SOCS, RMAP, GNUMAP

RMAP

No penalty for quality scores below a certain cut-off

Novoalign

Calculate base penalties for Needleman-Wunsch algorithm

GNUMAP

Construct position weigth matrix for each read Modified Needleman-Wunsch uses these matrices in alignment

Errors allowed

Schaik Introduction

NGS alignment

Barbera van

Overview

Feature-level comparison

Input data features

Variation and errors Alignments

Discussion

Depends on use case

- Small number of errors for detecting genome variation
- Allow more errors when comparing different species or longer reads
- 5 mismatches in read of 36 bases (14%)
- 5 mismatches in read of 150 bases (3%)

Mismatches, indels, gaps

Mutations, insertions and deletions usually supported Longer indels (gaps) not always supported **Challenge to distinguish true variations and sequencing errors**

Barbera van Schaik

Introduction

Overview

Feature-level comparison

Input data features

Variation and errors Alignments

Discussion

Constraints on mismatches and indels

Introducing mismatches and indels is computationally expensive

- ELAND: max 2 mismatches
- VMATCH, WHAM: up to 5 mismatches
- BSMAP: up to 15 mismatches
- SOAP, SOAP2: up to 3 and 2 indels
- MrFast: max 6 indels
- BWA: max 8 indels
- Bowtie, Bowtie2, GNUMAP, Mosaik, RazerS, SSAHA2, VMATCH, SHRiMP, SHRiMP2: no constraints

Barbera van Schaik

Constraints on gaps

Introduction

Overview

Feature-level comparison

Input data features

Variation and errors Alignments

Discussion

Introducing gaps important for RNA-seq experiments (splicing)

- **SOAPSplice, SpliceMap, WHAM**: allow a single gap, with different gap size constraints
- SOAP2, QPALMA: one gap without size constraint
- BLAT: multiple gaps with maximum size of 23 kb

RNA sequencing

Introduction

NGS alignment

Barbera van Schaik

Overview

Feature-level comparison

Input data features

Variation and errors Alignments

Discussion

Difficult due to splicing events

- Align to transcriptome (miss novel transcripts)
- Alternatively align to the genome (large gaps)
- Aligners: MapSplice, TopHat, Supersplat, SOAPSplice, SpliceMap, RNA-mate, RUM, PASS, QPALMA, MapSplice
 Some use a two step approach

1 map reads to the genome using unspliced read aligners

2 split unmapped reads and align the parts independently

Other aligners use seed-and-extend search (TopHat)

Barbera van Schaik

Alignments reported

Introduction

Overview

Feature-level comparison

Input data features Variation and errors

Alignments

Discussion

Exact alignments

Global: end-to-end of a read

Local: faster. Begin and end of read can often be discarded (MIDs, low quality ends)

Only report locations

E.g. if you are only interested in counts.

Barbera van Schaik

Introduction

Overview

Feature-level comparison

Input data features Variation and errors

Alignments

Discussion

Multi-map reads

Reads that map to multiple locations with similar scores:

- Repetitive regions
- Short read lengths

Reporting:

- Randomly pick one and give it mapping score 0 (BWA)
- Return up to N possible locations, discard the rest
- Often configurable, allowing more alignments takes longer
- Report all (mrFast, mrsFast, PatMaN)

Barbera van Schaik

Introduction

Overview

Feature-level comparison

Input data features Variation and errors Alignments

Anginnenta

Discussion

Computer requirements

- Varies per aligner
- Some need much memory
- Others a lot of disk space
- Depending on algorithm: longer run times

List of requirements per aligner in Table 3 of the paper

Discussion

Schaik

NGS alignment

Barbera van

Overview

Feature-level comparison

Input data features Variation and errors Alignments

Discussion

Specific aligners for different applications (DNA, miRNA, RNA, ChIP, bisulphite)

What is the best mapper??

- · Assess quality with simulated datasets
- RGASP (RNAseq) http://www.gencodegenes.org/rgasp/
- Alignathon (DNA-seq) http://compbio.soe.ucsc.edu/alignathon/

No results available at this moment for Alignathon

Interoperability

Schaik Introduction

NGS alignment

Barbera van

Overview

- Feature-level comparison
- Input data features Variation and errors Alignments

Discussion

- Input formats: FASTA, FASTQ, CFASTQ
- Output formats: tabular, SAM/BAM, CRAM
- Parameter settings also not standardized

Barbera van Schaik

What do we use?

Introduction

- Overview
- Feature-level comparison
- Input data features Variation and errors Alignments

Discussion

- DNA: BWA, STAR2 and GATK package
- RNA: HISAT2
- Long reads: BLAT, BLAST or BWA-MEM
- Fast alignment: Kallisto (pseudo-aligner)