Pre-processing and quality control of sequence data

Barbera van Schaik EDS - Bioinformatics and Biomedical Computing b.d.vanschaik@amsterdamumc.nl

Topic: quality control and prepare data for the interesting stuff

Keep

Pre-processing and quality control of sequence data

- In what format is sequence data provided?
 - Is the data of good quality?
 - How do you pre-process raw data for further analysis?
 - How to align sequences to a reference genome?
 - How do you judge if the alignment went well?

>hg19 dna range=chr16:226703-227520 5'pad=0 3'pad=0 strand=+ repeatMasking=none GAGAGAACCCACCATGGTGCTGTCTCCTGCCGACAAGACCAACGTCAAGG CCGCCTGGGGTAAGGTCGGCGCGCGCACGCTGGCGAGTATGGTGCGGAGGCC CTGGAGAGGTGAGGCTCCCTCCCCTGCTCCGACCCGGGCTCCTCGCCCGC CCGGACCCACAGGCCACCCTCAACCGTCCTGGCCCCGGACCCAAACCCCA CCCCTCACTCTGCTTCTCCCCGCAGGATGTTCCTGTCCTTCCCCACCACC AAGACCTACTTCCCGCACTTCGACCTGAGCCACGGCTCTGCCCAGGTTAA GGGCCACGGCAAGAAGGTGGCCGACGCGCTGACCAACGCCGTGGCGCACG TGGACGACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCGCAC AAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGAGCGGCGGGGCCGGGAGC CGCGGGTTGCGGGAGGTGTAGCGCAGGCGGCGGCTGCGGGCCTGGGCCCT GTGACCCTGGCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGC CTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGCTGACCTCCAAAT ACCGTTAAGCTGGAGCCTCGGTGGCCATGCTTCTTGCCCCTTGGGCCTCC CCCCAGCCCCTCCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAAT

Selection of brands

Roche - 454

Applied biosystems - Solid

Information from the sequencer

_F49EYDB01CB123 length=67 xy=0840_1277 region=1 run=R_2009_11_0

ID Sequence length Coordinate on slide

- Name of the sequences
- Sequences
 AGAGTAGCGTCGTCGTCGACGACGTCGTCGTCGTCG
- Quality scores
 34 34 34 34 34 34 34 34 34 31 30 31 31 34 32 30 31 31
- Optional: intensities A,0.87 C,0.00 G,1.20 T,0.30 A,0.54 C,0.50 G,

Every brand provides the data in a different format

Standard format: fastq

Fastq entry for one sequence

> One fastq file contains millions or billions of sequences

Standards

Image from: http://humanwarnings.hubpages.com/hub/Art-Has-No-Standards

Different types of sequences

- base space
- color space (Solid)
- double encoded

Most tools were/are designed for base space

Convert base space into color space

3 = T

Now convert color space to double encoded sequence

Different reporting of quality values

- Phred scores (Sanger)
- Solexa scores (older version of Illumina)
- Illumina 1.3+
- Illumina 1.8+
- Solid (comparable with Sanger)

http://en.wikipedia.org/wiki/Fastq

Phred scores

Phred quality scores are logarithmically linked to error probabilities

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90 %
20	1 in 100	99 %
30	1 in 1000	99.9%
40	1 in 10000	99.99 %
50	1 in 100000	99.999 %

Solexa scores
$$Q_{\text{solexa-prior to v.1.3}} = -10 \log_{10} \frac{p}{1-p}$$

Probability of base call errors. Relationship between Q and p using the **Sanger (red)** and **Solexa (black)** equations. The vertical dotted line indicates p = 0.05, or equivalently, $Q \approx 13$.

р

Ascii encoding

SSSSSSSSSSSSSSSS	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	ssss		
		******	******	
		IIIIIIIIIIIIIIIIIIIIIIIIIIII		
	J JJJ	τετετετετετετετετετε	JJJJJJJJJJJ	
LLLLLLLLLLLLLLL	LLLLLLLLLLLLLLLLLLLLL	LLLL		
!"#\$%&'()*+,/0	123456789:;<=>?@ABCDE	FGHIJKLMNOPQRSTUVWXYZ[\]^	`abcdefghijklmnopqr	stuvwxyz{ }~
	I I	I	I.	
33	59 64	73	104	126
S - Sanger	Phred+33, raw reads	typically (0, 40)		
X - Solexa	Solexa+64, raw reads	typically (-5, 40)		
I - Illumina 1.3+	Phred+64, raw reads	typically (0, 40)		
J - Illumina 1.5+	Phred+64, raw reads	typically (3, 40)		
with 0=unused,	1=unused, 2=Read Seg	ment Quality Control India	cator (bold)	
(Note: See dis	cussion above).			
L - Illumina 1.8+	Phred+33, raw reads	typically (0, 41)		

A base has an ascii score: **h** (Illumina 1.3+)

- 1. To which ascii number does this correspond?
- 2. What is the Phred score?
- 3. What does this mean in terms of error rate?

A base has an ascii score: **h** (Illumina 1.3+)

- 1. To which ascii number does this correspond?
- 2. What is the Phred score?
- 3. What does this mean in terms of error rate?

- 1. h = character 104
- 2. 104 (ascii) 64 (illumina 1.3 scheme) = 40 (phred score)
- 3. Phred score 40 = 1 error in 10,000 (accuracy 99.99%)

Summary:

In what format is sequence data provided?

- Information
 - sequences and quality scores
- File formats
 - sff, csfasta+quality, fastq
- Sequence formats
 - base space, color space, double encoded
- Quality score format
 - ascii, but with different schemes

Pre-processing and quality control of sequence data

- In what format is sequence data provided?
 - Is the data of good quality?
 - How do you pre-process raw data for further analysis?
 - How to align sequences to a reference genome?
 - How do you judge if the alignment went well?

Is the raw data of good quality?

- What is a good quality experiment?
- Example of a program for quality control
- What do the metrics mean?

Number of sequences

Measure	Value
Filename	run045-20110814.fastq
File type	Conventional base calls
Total Sequences	65905535
Sequence length	34
€GC	53

Back to summary

Quality of the sequences

● Per base sequence quality

Back to summary

Normal nucleotide content

Per base sequence content

Exercise: What went wrong here?

O Per base sequence content

Back to summary

Position in the reads

Exercise: What went wrong here?

Over a sequence content

Back to summary

Position in the reads

Pre-processing and quality control of sequence data

- In what format is sequence data provided?
- Is the data of good quality?
- How do you pre-process raw data for further analysis?
- How to align sequences to a reference genome?
- How do you judge if the alignment went well?

Data conversion

Most programs only work with fastq format

Data pre-processing – split per sample

Quality trimming - before

Quality trimming - after

Summary: How do you pre-process raw data for further analysis?

- Convert to a suitable data format
- Split experiment per sample
- Check the quality of the raw data
- Trim raw data on quality

Pre-processing and quality control of sequence data

- In what format is sequence data provided?
- Is the data of good quality?
- How do you pre-process raw data for further analysis?
- How to align sequences to a reference genome?
- How do you judge if the alignment went well?

How to align sequences to a reference genome?

- Dynamic programming doesn't work for NGS
- The alternative: BWA (and others)
- Alignment in base- and colorspace

Pairwise sequence alignment with dynamic programming

- + True optimization
- Time to compute: O(n x m)

Not suitable for next generation sequencing (unless you do this highly parallel on many computers at the same time)

BLAST

- + Works very good for large databases and not too many experiment sequences
- Index for the database is stored and accessed from disk

Accessing the disk every time is much slower than accessing the memory

BWA

- Based on Burrows-Wheeler transform
- Origin: data compression (bzip2)
- Does smart sorting of the database

David Wheeler Michael Burrows

http://bio-bwa.sourceforge.net/

- + Stores the entire database in memory
- + Time to compute: O(m)
- Database can not be larger than 4GB

Suitable for human genome and next generation sequence data

Sequence alignment in genome viewer

A closer look at the alignments: fix alignment errors

- BWA aligns sequences one by one
- Has problems with indels (insertions/deletions)
- Local realignment step to correct for these errors

Remove duplication artifacts from alignment files

Result: two sequences with one origin Can be identified, because they will align to the same position

Summary How to align sequences to a reference genome?

- You need a fast sequence alignment program like BWA (puts database in memory, time to align is linear to amount of sequences)
- Artifacts like alignment errors and duplication errors need to be fixed or removed

Pre-processing and quality control of sequence data

- In what format is sequence data provided?
- Is the data of good quality?
- How do you pre-process raw data for further analysis?
- How to align sequences to a reference genome?
- How do you judge if the alignment went well?

How can sequences align?

On a unique position On many positions With low confidence Not

Check nr of aligned sequences (Picard tools)

CATEGORY	FIRST_OF_PAIR	SECOND_OF_PAIR	PAIR
TOTAL_READS	62003448	62003448	124006896
PF_READS	62003448	62003448	124006896
PCT_PF_READS	1	1	1
PF_NOISE_READS	598	522	1120
PF_READS_ALIGNED	58856753	58618988	117475741
PCT_PF_READS_ALIGNED	0.94925	0.945415	0.947332
PF_HQ_ALIGNED_READS	55113393	54966470	110079863
PF_HQ_ALIGNED_BASES	4942400720	4911919258	9854319978
PF_HQ_ALIGNED_Q20_BASES	4789247244	4660056419	9449303663
PF_HQ_MEDIAN_MISMATCHES	0	0	0
PF_HQ_ERROR_RATE	0.003681	0.005545	0.00461
MEAN_READ_LENGTH	90	90	90
READS_ALIGNED_IN_PAIRS	58225227	58225318	116450545
PCT_READS_ALIGNED_IN_PAIRS	0.98927	0.993284	0.991273
BAD_CYCLES	0	0	0
STRAND_BALANCE	0.49934	0.499927	0.499633
PCT_CHIMERAS	0.004945	0.004958	0.004952
PCT_ADAPTER	0.000023	0.000016	0.000019

Paired-end sequencing

The Human Genome Structural Variation Working Group, Nature 2007

a

After alignment: check the insert size

MEDIAN_INSERT_SIZE	<mark>478</mark>
MIN_INSERT_SIZE	1
MAX_INSERT_SIZE	240953475
MEAN_INSERT_SIZE	474.443017
STANDARD_DEVIATION	33.616421
READ_PAIRS	50613089
PAIR_ORIENTATION	FR

How do pairs align?

Not

Unique and expected insert size Unique, but larger/smaller insert size Unique, but reversed On different chromosomes One unique, the other in a repeat Etc....

Check if most sequences are properly paired (samtools flagstat)

124006896 + 0 in total (QC-passed reads + QC-failed reads) 14993642 + 0 duplicates

117476853 + 0 mapped (94.73%:nan%)

124006896 + 0 paired in sequencing

62003448 + 0 read1

62003448 + 0 read2

115408830 + 0 properly paired (93.07%:nan%)

116451572 + 0 with itself and mate mapped

1025281 + 0 singletons (0.83%:nan%)

713462 + 0 with mate mapped to a different chr

594419 + 0 with mate mapped to a different chr (mapQ>=5)

Summary: How do you judge if the alignment went well?

- Percentage of aligned sequence reads
- Percentage of properly paired sequences
- Percentage of duplicate reads
- ... and several other metrics
- Have a closer look at the alignments

Pre-processing and quality control of sequence data

- In what format is sequence data provided?
- How do you check if the data is of good quality?
- How do you pre-process raw data for further analysis?
- How to align sequences to a reference genome?
- How do you judge if the alignment went well?

