
Practical: RNA-seq

Perry Moerland (p.d.moerland@amsterdamumc.nl)

March 12, 2021

Contents

1 Introduction 1

2 Creating a count table 2

2.1 Choosing and loading a gene model . 2

2.2 Aligned reads from BAM files . 4

2.3 Counting the reads . 4

2.4 Precomputed read counts in the parathyroidSE package . 5

3 Differential expression analysis: DESeq2 5

3.1 Collapsing technical replicates . 5

3.2 Running the DESeq2 pipeline . 6

3.3 Inspecting the results table . 8

3.4 Multiple testing . 10

3.5 Diagnostic plots . 13

3.6 Exploratory analysis . 16

4 Further pointers 19

5 System requirements 19

5.1 Installation of required R/Bioconductor packages . 19

6 Session info 19

1 Introduction

In the context of a high-throughput RNA sequencing experiment, the final analysis steps generally consist
of read counting and differential expression analysis. Read counting means counting the number of reads per
gene (or exon). The result of this counting will typically be organized as a matrix where:

• each row represents a gene (or exon);

• each column represents a sequencing run (usually a given sample);

1

p.d.moerland@amsterdamumc.nl

• and each value is the raw number of reads from the sequencing run that were assigned to the gene
(or exon).

This count table is the main ingredient for finding genes differentially expressed between the conditions
investigated in the experiment.

In this computer lab, you will learn how to generate a count table from aligned reads stored in BAM files
and to perform a differential expression analysis. For this purpose you will use several R/Bioconductor
packages. You will work with publicly available data from the article by Felix Haglund et al. [1] (http:
//www.ncbi.nlm.nih.gov/pubmed/23024189.) The purpose of the paired-end RNA-seq experiment de-
scribed in this paper was to investigate the role of the estrogen receptor in parathyroid tumors. The inves-
tigators derived primary cultures of parathyroid adenoma cells from 4 patients. These primary cultures
were treated with diarylpropionitrile (DPN), an estrogen receptor β agonist, with 4-hydroxytamoxifen
(OHT), a selective estrogen receptor modulator, or not treated (control). RNA was extracted at 24 hours
and 48 hours from cultures under treatment (DPN, OHT) and control. The blocked design of the experi-
ment allows for statistical analysis of the treatment effects while controlling for patient-to-patient variation.
One sample (patient 4, 24 hours, control) was omitted by the authors due to low quality.

First you will have to install quite some R/Bioconductor packages. Preferably you have already installed
these in the CDW or on your own laptop. See the mail that I sent earlier this week for instructions.

2 Creating a count table

The two main objects needed for generating a count table are:

1. genomic ranges of the genes (or exons) based on a gene model;

2. aligned reads as stored in BAM files.

2.1 Choosing and loading a gene model

To generate a count table one needs access to the genomic ranges of the genes (or exons). This information
can be extracted from what it is called a gene model. Gene models for various organisms are provided by
many annotation providers on the internet (UCSC, Ensembl, NCBI, TAIR, FlyBase, WormBase, etc.) In
Bioconductor a gene model is typically represented as a TxDb object. The GenomicFeatures package contains
tools for obtaining a gene model from these providers and store it in a TxDb object (the container for
gene models). For convenience, the most commonly used gene models are available as Bioconductor data
packages (called TxDb packages). Each TxDb package contains a TxDb object ready to use.

According to the vignette located in the parathyroidSE package that contains the data of Haglund et al. [1],
the reads in the BAM files were aligned to the GRCh37 human reference genome. One must therefore be
careful to choose a gene model based on the same reference genome as the one that was used to align
the reads. If you want to use the gene model for Human provided by Ensembl, the latest release based
on GRCh37 (release 75) is available via feb2014.archive.ensembl.org. Normally you would type the
following R code, but since ADICT probably blocks access to dangerous websites built by Russian hackers
such as Ensembl you should skip this:

Requires internet access and takes several minutes.

library(GenomicFeatures)

txdb <- makeTxDbFromBiomart(biomart="ENSEMBL_MART_ENSEMBL",

dataset="hsapiens_gene_ensembl",host="feb2014.archive.ensembl.org")

Type ?makeTxDbFromBiomart to get more information on this function

ex_by_gene <- exonsBy(txdb, by="gene") # GRangesList object

save(ex_by_gene,file="ex_by_gene.RData")

2

http://www.ncbi.nlm.nih.gov/pubmed/23024189
http://www.ncbi.nlm.nih.gov/pubmed/23024189
feb2014.archive.ensembl.org

This first makes a TxDb object containing the Ensembl gene model for Human and then creates an object
from it containing the exon ranges grouped by gene using the exonsBy function.

You can now load the resulting object:

library(GenomicFeatures)

rooturl <- "http://bioinformatics.amc.nl/wp-content/uploads/"

download.file(paste0(rooturl,

"gs-sequence-analysis/RNASequencing/ex_by_gene.zip"),

destfile="ex_by_gene.zip")

unzip("ex_by_gene.zip")

load("ex_by_gene.RData")

ex_by_gene

GRangesList object of length 64102:

$ENSG00000000003

GRanges object with 17 ranges and 2 metadata columns:

seqnames ranges strand | exon_id

<Rle> <IRanges> <Rle> | <integer>

[1] X 99883667-99884983 - | 667145

[2] X 99885756-99885863 - | 667146

[3] X 99887482-99887565 - | 667147

[4] X 99887538-99887565 - | 667148

[5] X 99888402-99888536 - | 667149

...

[13] X 99890555-99890743 - | 667157

[14] X 99891188-99891686 - | 667158

[15] X 99891605-99891803 - | 667159

[16] X 99891790-99892101 - | 667160

[17] X 99894942-99894988 - | 667161

exon_name

<character>

[1] ENSE00001459322

[2] ENSE00000868868

[3] ENSE00000401072

[4] ENSE00001849132

[5] ENSE00003554016

... ...

[13] ENSE00003662440

[14] ENSE00001886883

[15] ENSE00001855382

[16] ENSE00001863395

[17] ENSE00001828996

seqinfo: 722 sequences (1 circular) from an unspecified genome

##

...

<64101 more elements>

For the purpose of this practical, we’ll use a subset of the Ensembl genes. This subset is stored in the
parathyroidSE package and is based on the GRCh37 human reference genome.

Question 1: In this exercise, we have a look at the exonsByGene data set included in the parathyroidSE

package.

(a) Load the exonsByGene data set from the parathyroidSE package. Remember that you load a package

3

using the library function. Typing help(package=parathyroidSE) will then give you information on
how to load exonsByGene. What does the resulting object contain?

(b) How many genes are represented in this object?

Question 2: Compare the contents of the first five elements of the GRangesList object ex_by_gene gener-
ated above with those contained in exonsByGene. Can you find any differences? If so, how can these be
explained?

2.2 Aligned reads from BAM files

The parathyroidSE package contains RNA-seq data from the publication of Haglund et al. [1]. The package
also includes BAM files for 3 of the 27 sequencing runs. The reads in these files are paired-end reads
that were aligned using the TopHat aligner. To keep the package to a reasonable size, only a subset of
all the aligned reads from the experiment have been placed in these files. More information on how
these BAM files were obtained can be found in the vignette located in the parathyroidSE package (type
browseVignettes("parathyroidSE") in R to get a link to the vignette in your browser).

To get the paths to the BAM files into R, do:

bamdir <- system.file("extdata", package="parathyroidSE")

bamfiles <- list.files(bamdir, pattern="bam$", full.names=TRUE)

bamfiles

[1] "C:/Users/pdmoerland/R/R-3.6.1/library/parathyroidSE/extdata/SRR479052.bam"

[2] "C:/Users/pdmoerland/R/R-3.6.1/library/parathyroidSE/extdata/SRR479053.bam"

[3] "C:/Users/pdmoerland/R/R-3.6.1/library/parathyroidSE/extdata/SRR479054.bam"

Then create a BamFileList that contains a pointer to all three BAM files

library(Rsamtools)

bamfile_list <- BamFileList(bamfiles, index=character())

We need to use index=character() here because there are no

BAM index files (.bam.bai extension) associated with our BAM files.

Of course, the paths to the BAM files depend on the particular folder in which the parathyroidSE package
is installed on your computer and might be different in your case.

2.3 Counting the reads

Let us now see how aligned reads stored in BAM files can be counted with the summarizeOverlaps func-
tion from the GenomicAlignments package. With this function, the criteria used for assigning reads to genes
are controlled via 2 arguments: the mode and inter.feature arguments. In addition to the help page for
summarizeOverlaps, the “Counting reads with summarizeOverlaps” vignette (located in the GenomicAlign-

ments package and accessible via browseVignettes("GenomicAlignments")) is recommended reading if
you are planning to use this function.

Question 3:

(a) Use summarizeOverlaps on exonsByGene and bamfile_list to count the reads. Check the help page
for the details. Note that because the RNA-seq protocol was not strand specific, you need to specify
ignore.strand=TRUE. Also because the reads are paired-end, you need to specify singleEnd=FALSE.

(b) What is the default option used by summarizeOverlaps to resolve reads that overlap multiple features?
What does this mean?

4

(c) The call to summarizeOverlaps returned a RangedSummarizedExperiment object containing the matrix
of counts together with information about the genes and samples. The information in a RangedSummarized-

Experiment object can be accessed with so-called accessor functions. For example, to get the read
counts, we use the assay function. Extract the count table by applying the function assay to the
RangedSummarizedExperiment object. What are its dimensions, i.e. how many rows and columns does
the count table have?

Question 4: When summarizeOverlaps calls the reading function internally on each BAM file, by default
it does so without specifying additional options for counting and filtering. If you want, for example, to
discard PCR or optical duplicates and secondary alignments you have to define the param argument of
summarizeOverlaps. You can define a suitable value for param using the functions ScanBamParam and
scanBamFlag.

(a) Try to count the reads again but discard PCR or optical duplicates as well as secondary alignments.
Hint: take a careful look at the possible arguments of scanBamFlag (?scanBamFlag is your friend).

(b) What is a secondary alignment?

2.4 Precomputed read counts in the parathyroidSE package

The count tables you generated above were based on a small portion of the data only. The parathyroidSE

package also contains the parathyroidGenesSE data set which contains the counts of reads for all genes
and all sequencing runs.

Question 5: In this exercise, we load the parathyroidGenesSE data set from the parathyroidSE package and
perform some basic manipulations on it.

(a) Load the parathyroidGenesSE data set from the parathyroidSE package.

(b) Like above, extract the count table by applying the function assay to the RangedSummarizedExperiment
object. What are the dimensions of the count table? Display the top left corner of the count table (e.g.
first 6 rows and columns). Does it have row names or column names? What are the row names?

(c) In this matrix of read counts, each row represents an Ensembl gene, each column a sequencing run, and
the values are the raw numbers of reads in each sequencing run that were assigned to the respective
gene. How many reads were assigned to each of the samples? How many genes have non-zero counts?

(d) Use colData on parathyroidGenesSE. What do you get? How many rows does it have? Use the
function table to summarize the number of runs for each treatment (Control, DPN, and OHT).

3 Differential expression analysis: DESeq2

3.1 Collapsing technical replicates

There are a number of samples which were sequenced in multiple runs. To see this, we extract the ’sample’
column via the function colData:

colData(parathyroidGenesSE)$sample

[1] SRS308865 SRS308866 SRS308867 SRS308868 SRS308869

[6] SRS308870 SRS308871 SRS308872 SRS308873 SRS308873

[11] SRS308874 SRS308875 SRS308875 SRS308876 SRS308877

[16] SRS308878 SRS308879 SRS308880 SRS308881 SRS308882

5

[21] SRS308883 SRS308884 SRS308885 SRS308885 SRS308886

[26] SRS308887 SRS308887

23 Levels: SRS308865 SRS308866 SRS308867 ... SRS308887

For example, sample SRS308873 was sequenced twice. It is recommended to first add together techni-
cal replicates (i.e., libraries derived from the same samples), such that we have one column per sample.
Otherwise technical replicates would be considered biological replicates, which would lead to underesti-
mating biological variability and incorrectly reduced p-values. This can be easily done using the function
collapseReplicates from the DESeq2:

library(DESeq2)

parathyroidGenesSE_new <-

collapseReplicates(parathyroidGenesSE,groupby=colData(parathyroidGenesSE)$sample)

Only keep the column data columns that we actually need for our analysis below

colData(parathyroidGenesSE_new) <-

colData(parathyroidGenesSE_new)[, c("patient", "treatment", "time")]

parathyroidGenesSE_new

class: RangedSummarizedExperiment

dim: 63193 23

metadata(1): MIAME

assays(1): counts

rownames(63193): ENSG00000000003 ENSG00000000005 ...

LRG_98 LRG_99

rowData names(0):

colnames(23): SRS308865 SRS308866 ... SRS308886

SRS308887

colData names(3): patient treatment time

3.2 Running the DESeq2 pipeline

The package DESeq2 provides methods to test for differential expression by use of negative binomial gen-
eralized linear models (see browseVignettes("DESeq2") for a nice and detailed vignette of the package).
This section demonstrates a typical workflow for such an analysis.

On the importance of raw counts

As input, the DESeq2 package expects count data as obtained, e. g., from a RNA-Seq experiment, in the
form of a matrix of integer values. The value in the i-th row and the j-th column of the matrix tells how
many reads have been mapped to gene i in sample j.

The count values must be raw counts of sequencing reads. This is important for DESeq2’s statistical model
to hold, as only the actual counts allow assessing the measurement precision correctly. Hence, please do
not supply other quantities, such as (rounded) normalized counts, or counts of covered base pairs – this
will only lead to nonsensical results.

Preparing the data to be analyzed

In the previous section we prepared a RangedSummarizedExperiment object parathyroidGenesSE_new that
can readily be used in a DESeq2 analysis.

6

First we load the parathyroidGenesSE_new object generated in the previous section:

rooturl <- "http://bioinformatics.amc.nl/wp-content/uploads/"

download.file(paste0(rooturl,"gs-sequence-analysis//RNASequencing/parathyroidGenesSE_new.zip"),

destfile="parathyroidGenesSE_new.zip")

unzip("parathyroidGenesSE_new.zip")

load("parathyroidGenesSE_new.RData")

Then we create a DESeqDataSet object. This requires specifying a design formula, which tells which
factors in the column metadata table specify the experimental design and how these factors should be
used in the analysis. We specify ∼ patient + treatment, which means that we want to test for the effect
of treatment (the last factor), controlling for the effect of patient (the first factor). Here, it is sufficient
to know that using this design formula, we will be performing something that is similar to a paired test
exploiting that cells from the same patient received the same treatments (Control, DPN, OHT). You can
use R’s formula notation to express any experimental design that can be described within an ANOVA-
like framework. Specifying a design formula can be quite intricate for complex experimental designs.
Detailed examples for commonly used designs can be found in the user’s guide of the edgeR package
(type library(edgeR);edgeRUsersGuide() to open the PDF).

library(DESeq2)

ddsFull <- DESeqDataSet(se = parathyroidGenesSE_new, design = ~ patient + treatment)

ddsFull

class: DESeqDataSet

dim: 63193 23

metadata(2): MIAME version

assays(1): counts

rownames(63193): ENSG00000000003 ENSG00000000005 ...

LRG_98 LRG_99

rowData names(0):

colnames(23): SRS308865 SRS308866 ... SRS308886

SRS308887

colData names(3): patient treatment time

Question 6: Here we will analyze a subset of the samples, namely those taken after 48 hours, with either
control or DPN treatment, taking into account the multifactor design. Select only the relevant columns
from the full dataset ddsFull and assign it to variable dds. Since we selected a subset of the data, it is
necessary to "refactor" the factors, since several levels have been dropped. Here, for example the treatment
factor still contains the level "OHT", but no sample for this level:

dds$treatment

[1] Control DPN Control DPN Control DPN Control

[8] DPN

Levels: Control DPN OHT

dds$treatment <- factor(dds$treatment)

dds$treatment

[1] Control DPN Control DPN Control DPN Control

[8] DPN

Levels: Control DPN

7

Do we have the right samples?

colData(dds)

DataFrame with 8 rows and 3 columns

patient treatment time

<factor> <factor> <factor>

SRS308866 1 Control 48h

SRS308868 1 DPN 48h

SRS308872 2 Control 48h

SRS308874 2 DPN 48h

SRS308878 3 Control 48h

SRS308880 3 DPN 48h

SRS308883 4 Control 48h

SRS308885 4 DPN 48h

A call to the function DESeq would throw an error if we had omitted this step.

DESeq2 analysis

The DESeq2 analysis can now be run with a single call to the function DESeq:

dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

This added all kinds of bells and whistles to the dds object, which you will investigate in more detail in
the following sections.

3.3 Inspecting the results table

The results for the last variable in the design formula, in our case the treatment variable, can be extracted
using the results function:

res <- results(dds)

res

log2 fold change (MLE): treatment DPN vs Control

Wald test p-value: treatment DPN vs Control

DataFrame with 63193 rows and 6 columns

baseMean log2FoldChange

<numeric> <numeric>

ENSG00000000003 623.422704159628 -0.017931994587485

ENSG00000000005 0.680023404967342 -0.749857078573604

ENSG00000000419 299.746242365 -0.0126005895662198

8

ENSG00000000457 183.502856893626 -0.0907333019834504

ENSG00000000460 200.464220731487 0.372176830780138

...

LRG_94 0 NA

LRG_96 0 NA

LRG_97 0 NA

LRG_98 0 NA

LRG_99 0 NA

lfcSE stat

<numeric> <numeric>

ENSG00000000003 0.0916336472442749 -0.19569224980953

ENSG00000000005 2.59558008676392 -0.288897685106107

ENSG00000000419 0.118923623345575 -0.105955311583506

ENSG00000000457 0.150737013146947 -0.601931138803968

ENSG00000000460 0.148315172480573 2.50936451446927

...

LRG_94 NA NA

LRG_96 NA NA

LRG_97 NA NA

LRG_98 NA NA

LRG_99 NA NA

pvalue padj

<numeric> <numeric>

ENSG00000000003 0.8448510508845 0.996948189219851

ENSG00000000005 0.772659675252425 NA

ENSG00000000419 0.91561780871385 0.996948189219851

ENSG00000000457 0.547219975705456 0.996948189219851

ENSG00000000460 0.0120948603279287 0.276105175792322

...

LRG_94 NA NA

LRG_96 NA NA

LRG_97 NA NA

LRG_98 NA NA

LRG_99 NA NA

As res is a DataFrame object, it carries metadata with information on the meaning of the columns:

mcols(res)

DataFrame with 6 rows and 2 columns

type

<character>

baseMean intermediate

log2FoldChange results

lfcSE results

stat results

pvalue results

padj results

description

<character>

baseMean mean of normalized counts for all samples

log2FoldChange log2 fold change (MLE): treatment DPN vs Control

lfcSE standard error: treatment DPN vs Control

stat Wald statistic: treatment DPN vs Control

9

pvalue Wald test p-value: treatment DPN vs Control

padj BH adjusted p-values

The first column, baseMean, is a just the average of the normalized count values, taken over all samples.
The remaining four columns refer to a specific contrast, namely the comparison of the levels DPN versus
Control of the factor variable treatment. See the help page for results (by typing ?results) for information
on how to obtain other contrasts.

The column log2FoldChange is the effect size estimate. It tells us how much the gene’s expression has
changed due to treatment with DPN in comparison to control. This value is reported on a logarithmic
scale to base 2: for example, a log2 fold change of 1.5 means that the gene’s expression is increased by a
factor of 21.5 ≈ 2.82.

Of course, this estimate has an uncertainty associated with it, which is available in the column lfcSE, the
standard error estimate for the log2 fold change estimate. We can also express the uncertainty of a partic-
ular effect size estimate as the result of a statistical test. The purpose of a test for differential expression
is to test whether the data provides sufficient evidence to conclude that this value is really different from
zero (and that the sign is correct). DESeq2 performs for each gene a hypothesis test to see whether evidence
is sufficient to decide against the null hypothesis that there is no effect of the treatment on the gene and that
the observed difference between treatment and control was merely caused by experimental variability (i. e.,
the type of variability that you can just as well expect between different samples in the same treatment
group). As usual in statistics, the result of this test is reported as a p-value, and it is found in the column
pvalue. (Remember that a p-value indicates the probability that a fold change as strong as the observed
one, or even stronger, would be seen under the situation described by the null hypothesis.)

Finally, we note that a subset of the p-values in res are NA (“not available”). This is DESeq’s way of reporting
that all counts for this gene were zero, and hence no test was applied.

Question 7: The function DESeq takes the different library sizes into account in its statistical model. The
estimated size factors estimated for this purpose have been included in the column metadata of the dds

object.

colData(dds)$sizeFactor

SRS308866 SRS308868 SRS308872 SRS308874 SRS308878 SRS308880

1.0765936 0.9932643 0.6706964 0.8010918 0.8652826 1.7399298

SRS308883 SRS308885

0.8295786 1.4777134

(a) The function DESeq uses a robust method to estimate the size factors. Calculate the factors that you
would obtain if you would normalize each sequencing run with respect to the average number of
counts.

(b) Compare the values for both methods. Do you expect that the choice of normalization method will
have a large effect on the down-stream analysis in this case?

(c) Check to see if the baseMean is indeed the mean of raw counts or the mean of normalized counts (hint:
use the counts function)?

3.4 Multiple testing

Novices in high-throughput biology often assume that thresholding p-values at 0.05, as is often done in
other settings, would be appropriate – but it is not. We briefly explain why:

There are 906 genes with a p-value below 0.05 among the 30434 genes, for which the test succeeded in
reporting a p-value:

10

sum(res$pvalue < 0.05, na.rm=TRUE)

[1] 906

table(is.na(res$pvalue))

##

FALSE TRUE

30434 32759

Now, assume for a moment that the null hypothesis is true for all genes, i.e., no gene is affected by the
treatment with DPN. Then, by the definition of p-value, we expect up to 5% of the genes to have a p-value
below 0.05. This amounts to 1522 genes. If we just considered the list of genes with a p-value below 0.05
as differentially expressed, this list should therefore be expected to contain up to 1522/906 = 168% (let’s
say 100%) false positives!

DESeq2 uses the so-called Benjamini-Hochberg (BH) adjustment; in brief, this method calculates for each
gene an adjusted p-value which answers the following question: if one called significant all genes with a
p-value less than or equal to this gene’s p-value threshold, what would be the fraction of false positives
(the false discovery rate, FDR) among them (in the sense of the calculation outlined above)? These values,
called the BH-adjusted p-values, are given in the column padj of the results object.

Hence, if we consider a fraction of 10% false positives acceptable, we can consider all genes with an adjusted
p-value below 10%=0.1 as significant. How many such genes are there?

sum(res$padj < 0.1, na.rm=TRUE)

[1] 236

We subset the results table to these genes and then sort it by the log2-fold-change estimate to get the
significant genes with the strongest down-regulation

resSig <- res[which(res$padj < 0.1),]

head(resSig[order(resSig$log2FoldChange),])

log2 fold change (MLE): treatment DPN vs Control

Wald test p-value: treatment DPN vs Control

DataFrame with 6 rows and 6 columns

baseMean log2FoldChange

<numeric> <numeric>

ENSG00000163631 268.836661246947 -0.97188763049082

ENSG00000145244 173.331658179128 -0.816530762063189

ENSG00000169239 1547.61140356092 -0.76866722484542

ENSG00000041982 1493.26304568347 -0.70389211528266

ENSG00000119946 183.490954769971 -0.699677506586409

ENSG00000155111 587.892288902484 -0.675326192945983

lfcSE stat

<numeric> <numeric>

ENSG00000163631 0.151829596999077 -6.40117374807183

ENSG00000145244 0.237157384161872 -3.44299109618221

ENSG00000169239 0.0911072796563921 -8.43694628732656

ENSG00000041982 0.0857431291127707 -8.20931219289758

ENSG00000119946 0.166147415129077 -4.21118502531528

11

ENSG00000155111 0.0987865765718096 -6.83621415360089

pvalue padj

<numeric> <numeric>

ENSG00000163631 1.54186988030729e-10 1.1669582886418e-07

ENSG00000145244 0.000575318254978076 0.0347273393296275

ENSG00000169239 3.2573606261897e-17 1.06830570670268e-13

ENSG00000041982 2.22459126174234e-16 5.47193835607071e-13

ENSG00000119946 2.54034568821995e-05 0.00320441810594822

ENSG00000155111 8.13133630488576e-12 8.88935754486344e-09

and with the strongest upregulation

tail(resSig[order(resSig$log2FoldChange),])

log2 fold change (MLE): treatment DPN vs Control

Wald test p-value: treatment DPN vs Control

DataFrame with 6 rows and 6 columns

baseMean log2FoldChange

<numeric> <numeric>

ENSG00000158457 301.551036962356 0.622084934994109

ENSG00000159307 258.895063901787 0.633776974537171

ENSG00000156414 136.907007840686 0.7832401157074

ENSG00000103257 168.152231856987 0.823774509133976

ENSG00000101255 284.997129109888 0.879295115645584

ENSG00000092621 594.182981210876 0.918414129671324

lfcSE stat

<numeric> <numeric>

ENSG00000158457 0.161437806114784 3.8534030532588

ENSG00000159307 0.14753572306804 4.29575265811987

ENSG00000156414 0.181358524007566 4.31873891780639

ENSG00000103257 0.171008811943237 4.81714655387122

ENSG00000101255 0.159616385918632 5.50880231114757

ENSG00000092621 0.12216463853399 7.51783937391829

pvalue padj

<numeric> <numeric>

ENSG00000158457 0.000116487398849416 0.0105916926874801

ENSG00000159307 1.74101617734789e-05 0.00231484569850349

ENSG00000156414 1.56923284505185e-05 0.00211502492636509

ENSG00000103257 1.45625731150969e-06 0.000333211992742879

ENSG00000101255 3.6128335874206e-08 1.2695239166654e-05

ENSG00000092621 5.56888600703128e-14 7.82746706045439e-11

Question 8: What is the proportion of down- and up-regulation among the genes with adjusted p-value
less than 0.1?

Of course it is often useful to visualize the counts of reads for a single gene across the treatments. Here
we use the function plotCounts and specify the gene which had the smallest p-value in the results table
created above (Fig. 1):

plotCounts(dds, gene=which.min(res$pvalue), intgroup="treatment")

12

40
00

50
00

60
00

ENSG00000044574

group

no
rm

al
iz

ed
 c

ou
nt

Control DPN

Figure 1: Normalized counts for the gene with the smallest p-value in the comparison of DPN versus
control treatment.

3.5 Diagnostic plots

A so-called MA-plot provides a useful overview for an experiment with a two-group comparison:

plotMA(dds, ylim = c(-0.75, 0.75))

The plot (Fig. 2) represents each gene with a dot. The x axis is the average expression over all samples,
the y axis the log2 fold change between treatment and control. Genes with an adjusted p-value below a
threshold (here 0.1, the default) are shown in red.

This plot demonstrates that only genes with an average normalized count above 100 contain sufficient
information to yield a significant call, and only above about 1000 counts can smaller fold-changes become
significant.

It is actually more useful to visualize the MA-plot for the shrunken log fold changes (LFC). When count
values are too low to allow an accurate estimate of the LFCs, the value is “shrunken” towards zero to
avoid that these values, which otherwise would frequently be unrealistically large, dominate the top-
ranked log fold changes. To shrink the LFCs, we pass the dds object to the function lfcShrink indicating
the comparison of interest:

resLFC <- lfcShrink(dds, coef="treatment_DPN_vs_Control")

using 'normal' for LFC shrinkage, the Normal prior from Love et al (2014).

##

Note that type='apeglm' and type='ashr' have shown to have less bias than type='normal'.

13

1e−01 1e+01 1e+03 1e+05

−
0.

5
0.

0
0.

5

mean of normalized counts

lo
g

fo
ld

 c
ha

ng
e

Figure 2: The MA-plot shows the log2 fold changes from the treatment over the mean of normalized
counts, i.e. the average of counts normalized by size factor. Points are colored red if the adjusted p-value
is less than 0.1. Points which fall out of the window are plotted as open triangles pointing either up or
down.

14

1e−01 1e+01 1e+03 1e+05

−
0.

5
0.

0
0.

5

mean of normalized counts

lo
g

fo
ld

 c
ha

ng
e

Figure 3: The MA-plot shows the shrunken log2 fold changes from the treatment over the mean of nor-
malized counts, i.e. the average of counts normalized by size factor. Points are colored red if the adjusted
p-value is less than 0.1. Points which fall out of the window are plotted as open triangles pointing either
up or down. Shrinkage incorporates a prior on log2 fold changes, resulting in moderated estimates from
genes with low counts and highly variable counts, as can be seen by the narrowing of the vertical spread
of points on the left side of the plot.

See ?lfcShrink for more details on shrinkage type, and the DESeq2 vignette.

Reference: https://doi.org/10.1093/bioinformatics/bty895

The MA-plot for the LFCs (Fig. 3) is then created as follows:

plotMA(resLFC, ylim = c(-0.75, 0.75))

Whether a gene is called significant depends not only on its LFC but also on its within-group variability,
which DESeq2 quantifies as the dispersion. For strongly expressed genes, the dispersion can be understood
as a squared coefficient of variation: a dispersion value of 0.01 means that the gene’s expression tends
to differ by typically

√
0.01 = 10% between samples of the same treatment group. For weakly expressed

genes, the Poisson noise is an additional source of noise, which is added to the dispersion.

The function plotDispEsts visualizes DESeq2’s dispersion estimates (Fig. 4):

plotDispEsts(dds)

The black dots are the dispersion estimates for each gene as obtained by considering the information from
each gene separately. Unless one has many samples, these values fluctuate strongly around their true
values. Therefore, we fit the red trend line, which shows the dispersions’ dependence on the mean, and

15

1e−01 1e+01 1e+03 1e+05

1e
−

08
1e

−
04

1e
+

00

mean of normalized counts

di
sp

er
si

on

gene−est
fitted
final

Figure 4: Plot of dispersion estimates. See text for details.

then shrink each gene’s estimate towards the red line to obtain the final estimates (blue circles) that are
then used in the hypothesis test.

Another useful diagnostic plot is the histogram of the p-values (Fig. 5).

hist(res$pvalue, breaks=100)

Question 9: Revisit the discussion about p-values and multiple testing in the previous section. Which part
of the histogram is caused by genes that are called significant? And which part is caused by those that are
truly significant? Why are there “spikes” at intermediate values?

3.6 Exploratory analysis

Many common statistical methods for exploratory analysis of multidimensional data, especially methods
for clustering and ordination (e. g., principal-component analysis), work best for (at least approximately)
homoskedastic data; this means that the variance of an observable (i.e., here, the expression strength of
a gene) does not depend on the mean. In RNA-Seq data, however, variance grows with the mean. For
example, if one performs PCA directly on a matrix of normalized read counts, the result typically depends
only on the few most strongly expressed genes because they show the largest absolute differences between
samples. A simple and often used strategy to avoid this is to take the logarithm of the normalized count
values; however, now the genes with low counts tend to dominate the results because, due to the strong
Poisson noise inherent to small count values, they show the strongest relative differences between samples.

As a solution, DESeq2 offers the regularized-logarithm transformation, or rlog for short. For genes with high
counts, the rlog transformation differs not much from an ordinary log2 transformation. For genes with
lower counts, however, the values are shrunken towards the genes’ averages across all samples. Using an

16

Histogram of res$pvalue

res$pvalue

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
15

00

Figure 5: Histogram of the p-values returned by the test for differential expression.

empirical Bayesian prior in the form of a ridge penality, this is done such that the rlog-transformed data are
approximately homoskedastic.

The function rlogTransform returns a DESeqTransform object which contains the rlog-transformed values
in its assay slot:

rld <- rlogTransformation(dds)

head(assay(rld))

SRS308866 SRS308868 SRS308872 SRS308874

ENSG00000000003 9.7281273 9.6975828 9.1310119 9.1894125

ENSG00000000005 -0.6610708 -0.5302481 -0.6338938 -0.7231434

ENSG00000000419 8.0983673 8.1085864 8.2400300 8.2911769

ENSG00000000457 7.4439013 7.3018366 7.8173333 7.7094949

ENSG00000000460 7.5733354 7.6718827 7.9893714 8.1747855

ENSG00000000938 3.2943821 3.1750959 4.0677929 3.6405037

SRS308878 SRS308880 SRS308883 SRS308885

ENSG00000000003 8.952581 8.8604213 9.0904959 9.1108783

ENSG00000000005 -0.724811 -0.7306887 -0.7243747 -0.7295391

ENSG00000000419 8.302976 8.3084428 8.2650841 8.1707219

ENSG00000000457 7.220910 7.3417436 7.6014490 7.4952816

ENSG00000000460 7.133437 7.4527080 7.0154215 7.3733657

ENSG00000000938 3.096320 3.4243846 3.3973629 3.5014756

A popular way to visualize sample-to-sample distances is a principal-components analysis (PCA). In this
ordination method, the data points (i.e., here, the samples) are projected onto the 2D plane such that they
spread out optimally (Fig. 6).

17

−10

0

10

−20 0 20
PC1: 61% variance

P
C

2:
 2

2%
 v

ar
ia

nc
e

group

1:Control

1:DPN

2:Control

2:DPN

3:Control

3:DPN

4:Control

4:DPN

Figure 6: The PCA plot shows that the difference between patients is much greater than the difference
between treatments

print(plotPCA(rld, intgroup = c("patient", "treatment")))

Here, we have used the function plotPCA which comes with DESeq2. The two terms specified as intgroup
are column names from our sample data; they tell the function to use them to choose colours.

From the PCA plot, we see that the difference between patients is much larger than the difference between
treatment and control samples of the same patient. This shows why it was important to account for this
paired design (“paired”, because each treated sample is paired with one control sample from the same
patient). We did so by using the design formula ~ patient + treatment when setting up the data object
in the beginning. Had we used an un-paired analysis, by specifying only ~ treatment, we would not have
found many hits, because then, the patient-to-patient differences would have drowned out any treatment
effects.

Question 10: How many genes differentially expressed with an adjusted p-value below 0.1 would you
have found with a design that ignores the pairing of the samples?

Here, we have performed the exploratory data analysis towards the end of our analysis. In practice,
however, this is a step suitable to give a first overview on the data. Hence, one will typically carry out this
analysis as one of the first steps.

Now try to perform the same analysis as above using BioJupies (https://maayanlab.cloud/biojupies/).
BioJupies is a web server that automatically generates RNA-seq data analysis notebooks. The data of
Haglund et al. [1] can be found in BioJupies by searching for GSE37211. Compare and contrast the analyses
that you performed above with the results that you obtain with BioJupies.

18

https://maayanlab.cloud/biojupies/

4 Further pointers

Worked out solutions and code for the exercises can be found at https://bioinformatics.amc.nl/

education/gs-bioinformatics-sequence-analysis/

5 System requirements

5.1 Installation of required R/Bioconductor packages

For the L0/L01 desktops only. See the mail I sent earlier this week for installation instructions for the
CDW or your own laptop:

• Open R version 3.4.4 or RStudio.

• Now you’ll have to install a number of Bioconductor packages:

1. type .libPaths("C:/Scratch") at the R prompt

2. Type source("http://bioconductor.org/biocLite.R") at the R prompt

3. Install the following packages via biocLite(c("BiocParallel","DESeq2","edgeR",

"GenomicAlignments","GenomicFeatures","parathyroidSE","Rsamtools")).

4. If you are asked "Update all/some/none? [a/s/n]:", answer "n".

6 Session info

As last part of this document, we call the function sessionInfo, which reports the version numbers of R
and all the packages used in this session. It is good practice to always keep such a record as it will help to
trace down what has happened in case that an R script ceases to work because a package has been changed
in a newer version.

R version 3.6.1 (2019-07-05)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows 7 x64 (build 7601) Service Pack 1

##

Matrix products: default

##

locale:

[1] LC_COLLATE=English_United Kingdom.1252

[2] LC_CTYPE=English_United Kingdom.1252

[3] LC_MONETARY=English_United Kingdom.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United Kingdom.1252

##

attached base packages:

[1] stats4 parallel stats graphics grDevices

[6] utils datasets methods base

##

other attached packages:

[1] DESeq2_1.26.0 GenomicAlignments_1.22.1

[3] Rsamtools_2.2.3 Biostrings_2.54.0

[5] XVector_0.26.0 parathyroidSE_1.24.0

19

https://bioinformatics.amc.nl/education/gs-bioinformatics-sequence-analysis/
https://bioinformatics.amc.nl/education/gs-bioinformatics-sequence-analysis/

[7] SummarizedExperiment_1.16.1 DelayedArray_0.12.2

[9] BiocParallel_1.20.1 matrixStats_0.55.0

[11] GenomicFeatures_1.38.2 AnnotationDbi_1.48.0

[13] Biobase_2.46.0 GenomicRanges_1.38.0

[15] GenomeInfoDb_1.22.0 IRanges_2.20.0

[17] S4Vectors_0.24.0 BiocGenerics_0.32.0

[19] knitr_1.25

##

loaded via a namespace (and not attached):

[1] bitops_1.0-6 bit64_0.9-7

[3] RColorBrewer_1.1-2 progress_1.2.2

[5] httr_1.4.1 tools_3.6.1

[7] backports_1.1.5 R6_2.4.0

[9] rpart_4.1-15 Hmisc_4.3-1

[11] DBI_1.1.0 colorspace_1.4-1

[13] nnet_7.3-12 tidyselect_1.1.0

[15] gridExtra_2.3 prettyunits_1.0.2

[17] bit_1.1-14 curl_4.2

[19] compiler_3.6.1 htmlTable_1.13.2

[21] labeling_0.3 rtracklayer_1.46.0

[23] scales_1.0.0 checkmate_1.9.4

[25] genefilter_1.68.0 askpass_1.1

[27] rappdirs_0.3.1 stringr_1.4.0

[29] digest_0.6.22 foreign_0.8-71

[31] base64enc_0.1-3 pkgconfig_2.0.3

[33] htmltools_0.4.0 dbplyr_1.4.2

[35] highr_0.8 htmlwidgets_1.5.3

[37] rlang_0.4.10 rstudioapi_0.10

[39] RSQLite_2.1.2 acepack_1.4.1

[41] dplyr_0.8.3 RCurl_1.95-4.12

[43] magrittr_1.5 GenomeInfoDbData_1.2.2

[45] Formula_1.2-3 Matrix_1.2-17

[47] Rcpp_1.0.2 munsell_0.5.0

[49] lifecycle_1.0.0 stringi_1.4.3

[51] zlibbioc_1.32.0 BiocFileCache_1.10.2

[53] grid_3.6.1 blob_1.2.0

[55] crayon_1.3.4 lattice_0.20-41

[57] splines_3.6.1 annotate_1.64.0

[59] hms_0.5.2 locfit_1.5-9.1

[61] pillar_1.4.7 geneplotter_1.64.0

[63] codetools_0.2-16 biomaRt_2.42.0

[65] XML_3.99-0.3 glue_1.3.1

[67] evaluate_0.14 latticeExtra_0.6-28

[69] data.table_1.12.6 vctrs_0.3.6

[71] gtable_0.3.0 openssl_1.4.1

[73] purrr_0.3.3 assertthat_0.2.1

[75] ggplot2_3.3.3 xfun_0.21

[77] xtable_1.8-4 survival_3.1-8

[79] tibble_3.0.6 snow_0.4-3

[81] memoise_1.1.0 cluster_2.1.0

[83] ellipsis_0.3.0

20

Acknowledgements

I would like to thank the Bioconductor community (in particular, Hervé Pagès, Michael Love, Simon
Anders, Wolfgang Huber, Sean Davis, Mark Robinson and Gordon Smyth) for providing the packages,
vignettes and course material that formed the basis for these exercises.

References

[1] Felix Haglund, Ran Ma, Mikael Huss, Luqman Sulaiman, Ming Lu, Inga-Lena Nilsson, Anders Höög,
Christofer C. Juhlin, Johan Hartman, and Catharina Larsson. Evidence of a Functional Estrogen Re-
ceptor in Parathyroid Adenomas. Journal of Clinical Endocrinology & Metabolism, September 2012.

21

	1 Introduction
	2 Creating a count table
	2.1 Choosing and loading a gene model
	2.2 Aligned reads from BAM files
	2.3 Counting the reads
	2.4 Precomputed read counts in the parathyroidSE package

	3 Differential expression analysis: DESeq2
	3.1 Collapsing technical replicates
	3.2 Running the DESeq2 pipeline
	3.3 Inspecting the results table
	3.4 Multiple testing
	3.5 Diagnostic plots
	3.6 Exploratory analysis

	4 Further pointers
	5 System requirements
	5.1 Installation of required R/Bioconductor packages

	6 Session info

