Practical: RNA-seq

Perry Moerland (p.d.moerland@amsterdamumc.nl)

March 12, 2021

Contents
(I__Introduction| 1
2 Creating a count table| 2
2.1 Choosing and loadinga genemodel| oo oo 2
2.2 Aligned reads from BAM files|. o o o oo 7
2.3 Countingthereads| 7
[2.4 Precomputed read counts in the parathyroidSE package| 9
|3 Differential expression analysis: DESeq?2)| 12
3.1 Collapsing technical replicates| 0. 12
[3.2 Running the DESeq2 pipeline| oo 13
3.3 Inspecting theresultstable|] o 0o o oo, 15
34 Multipletesting] 18
3.5 Diagnosticplots| 20
[3.6 Exploratory analysis| 25
|4 Further pointers| 27
|5 System requirements| 27
[5.1 Installation of required R/Bioconductor packages| 27
6 Sessioninfol 27

1 Introduction

In the context of a high-throughput RNA sequencing experiment, the final analysis steps generally consist
of read counting and differential expression analysis. Read counting means counting the number of reads per
gene (or exon). The result of this counting will typically be organized as a matrix where:

¢ each row represents a gene (or exon);

* each column represents a sequencing run (usually a given sample);

p.d.moerland@amsterdamumc.nl

* and each value is the raw number of reads from the sequencing run that were assigned to the gene
(or exon).

This count table is the main ingredient for finding genes differentially expressed between the conditions
investigated in the experiment.

In this computer lab, you will learn how to generate a count table from aligned reads stored in BAM files
and to perform a differential expression analysis. For this purpose you will use several R/Bioconductor
packages. You will work with publicly available data from the article by Felix Haglund et al. [1]] (http:
//www.ncbi.nlm.nih.gov/pubmed/23024189.) The purpose of the paired-end RNA-seq experiment de-
scribed in this paper was to investigate the role of the estrogen receptor in parathyroid tumors. The inves-
tigators derived primary cultures of parathyroid adenoma cells from 4 patients. These primary cultures
were treated with diarylpropionitrile (DPN), an estrogen receptor B agonist, with 4-hydroxytamoxifen
(OHT), a selective estrogen receptor modulator, or not treated (control). RNA was extracted at 24 hours
and 48 hours from cultures under treatment (DPN, OHT) and control. The blocked design of the experi-
ment allows for statistical analysis of the treatment effects while controlling for patient-to-patient variation.
One sample (patient 4, 24 hours, control) was omitted by the authors due to low quality.

First you will have to install quite some R/Bioconductor packages. Preferably you have already installed
these in the CDW or on your own laptop. See the mail that I sent earlier this week for instructions.

2 Creating a count table

The two main objects needed for generating a count table are:

1. genomic ranges of the genes (or exons) based on a gene model;

2. aligned reads as stored in BAM files.

2.1 Choosing and loading a gene model

To generate a count table one needs access to the genomic ranges of the genes (or exons). This information
can be extracted from what it is called a gene model. Gene models for various organisms are provided by
many annotation providers on the internet (UCSC, Ensembl, NCBI, TAIR, FlyBase, WormBase, etc.) In
Bioconductor a gene model is typically represented as a TxDb object. The GenomicFeatures package contains
tools for obtaining a gene model from these providers and store it in a TxDb object (the container for
gene models). For convenience, the most commonly used gene models are available as Bioconductor data
packages (called TxDb packages). Each TxDb package contains a TxDb object ready to use.

According to the vignette located in the parathyroidSE package that contains the data of Haglund et al. [1],
the reads in the BAM files were aligned to the GRCh37 human reference genome. One must therefore be
careful to choose a gene model based on the same reference genome as the one that was used to align
the reads. If you want to use the gene model for Human provided by Ensembl, the latest release based
on GRCh37 (release 75) is available via feb2014.archive.ensembl.org. Normally you would type the
following R code, but since ADICT probably blocks access to dangerous websites built by Russian hackers
such as Ensembl you should skip this:

library(GenomicFeatures)
txdb <- makeTxDbFromBiomart (biomart="ENSEMBL_MART_ENSEMBL",
dataset="hsapiens_gene_ensembl" ,host="feb2014.archive.ensembl.org")

ex_by_gene <- exonsBy(txdb, by='"gene")
save(ex_by_gene,file="ex_by_gene.RData")

http://www.ncbi.nlm.nih.gov/pubmed/23024189
http://www.ncbi.nlm.nih.gov/pubmed/23024189
feb2014.archive.ensembl.org

This first makes a TxDb object containing the Ensembl gene model for Human and then creates an object
from it containing the exon ranges grouped by gene using the exonsBy function.

You can now load the resulting object:

library (GenomicFeatures)
rooturl <- "http://bioinformatics.amc.nl/wp-content/uploads/"
download.file(pasteO(rooturl,

"gs-sequence-analysis/RNASequencing/ex_by_gene.zip"),
destfile="ex_by_gene.zip")

unzip("ex_by_gene.zip")
load("ex_by_gene.RData")
ex_by_gene

GRangesList object of length 64102:
$ENSG00000000003
GRanges object with 17 ranges and 2 metadata columns:

##
##
#it
#it
#t
#
##
i
#it
#it
##
##
#it
#it
#it
##
##
##
e
#it
#
##
##
#it
#it
#it
#
##
##
#it

segnames ranges strand | exon_id
<Rle> <IRanges> <Rle> | <integer>

[1] X 99883667-99884983 - 667145
[2] X 99885756-99885863 - 667146
[3] X 99887482-99887565 - 667147
[4] X 99887538-99887565 - 667148
(5] X 99888402-99888536 - 667149
[13] X 99890555-99890743 - 667157
[14] X 99891188-99891686 - 667158
[15] X 99891605-99891803 - 667159
[16] X 99891790-99892101 - 667160
[17] X 99894942-99894988 - 667161

exon_name

<character>
[1] ENSE00001459322
[2] ENSE00000868868
[3] ENSE00000401072
[4] ENSE00001849132
[6] ENSE00003554016

[13] ENSE00003662440
[14] ENSE00001886883
[15] ENSE00001855382
[16] ENSE00001863395
[17] ENSE00001828996

seqinfo: 722 sequences (1 circular) from an unspecified genome

<64101 more elements>

For the purpose of this practical, we’ll use a subset of the Ensembl genes. This subset is stored in the
parathyroidSE package and is based on the GRCh37 human reference genome.

Question 1: In this exercise, we have a look at the exonsByGene data set included in the parathyroidSE
package.

(a) Load the exonsByGene data set from the parathyroidSE package. Remember that you load a package

using the library function. Typing help (package=parathyroidSE) will then give you information on
how to load exonsByGene. What does the resulting object contain?

(b) How many genes are represented in this object?

Answer 1:

(a) library(parathyroidSE)

data(exonsByGene)
exonsByGene

GRangesList object of length 100:
$ENSG00000000003
GRanges object with 17 ranges and 2 metadata columns:

seqnames ranges strand | exon_id
<Rle> <IRanges> <Rle> | <integer>
#it [1] X 99883667-99884983 - 664095
#it [2] X 99885756-99885863 - 664096
#i# [3] X 99887482-99887565 - 664097
#i# [4] X 99887538-99887565 - 664098
#it [5] X 99888402-99888536 - 664099
#it 000 000 000 co00 o 000
#it [13] X 99890555-99890743 - 664106
#i# [14] X 99891188-99891686 - 664108
#i# [15] X 99891605-99891803 - 664109
#i# [16] X 99891790-99892101 - 664110
#it [17] X 99894942-99894988 - 664111
exon_name

#H# <character>

[1] ENSE00001459322
i [2] ENSE00000868868
[3] ENSE00000401072
[4] ENSE00001849132
[5] ENSE00003554016
i
[13] ENSE00003512331
[14] ENSE00001886883
[15] ENSE00001855382
[16] ENSE00001863395
[17] ENSE00001828996
o -

seqinfo: 580 sequences (1 circular) from an unspecified genome
##

...

<99 more elements>

This a GRangesList object with a subset of genes/transcripts from the GRCh37 Ensembl annotations.
Each list element is a GRanges object containing the exon ranges for the gene. The R output displayed
above only gives a summary and shows (part of) the first element of the list (gene ENSG00000000003).
According to the Ensembl annotation used, apparently 17 different exons are known for the different
transcript variants of this gene. You might want to compare the information provided here with the

information for this gene provided by the Ensembl website (http://feb2014.archive.ensembl.org/
Homo_sapiens/Gene/Summary?g=ENSGO0000000003).

Other elements of the list can be shown like this (for the second element in this case):

exonsByGene [[2]]

GRanges object with 10 ranges and 2 metadata columns:

seqnames ranges strand | exon_id
i <Rle> <IRanges> <Rle> | <integer>
[1] X 99839799-99840063 + | 654255
[2] X 99840228-99840359 + | 654256
i [3] X 99848621-99849032 + | 654257
[4] X 99848892-99849032 + | 654258
[5] X 99849258-99849359 + | 654259
(6] X 99849258-99849359 + | 654260
(7] X 99852501-99852528 + | 654261
(8] X 99852501-99852654 + | 654262
[9] X 99854013-99854179 + | 654263
[10] X 99854505-99854882 + | 654264
exon_name

<character>

[1] ENSE00001459371
[2] ENSE00000401061
[3] ENSE00001952391
[4] ENSE00000673400
[5] ENSE00003504197
[6] ENSE00003639486
[7] ENSE00001881546
[8] ENSE00000673403
[9] ENSE00000868865
[10] ENSE00001459358
o -

seqinfo: 580 sequences (1 circular) from an unspecified genome

(b) Number of genes in this object:

length(exonsByGene)
[1] 100

You could also have seen this in the summary obtained via exonsByGene above. The names of the 100
genes can be extracted via names (exonsByGene).

Question 2: Compare the contents of the first five elements of the GRangesList object ex_by_gene gener-
ated above with those contained in exonsByGene. Can you find any differences? If so, how can these be
explained?

Answer 2: There are indeed differences, for example there is an extra exon (ENSE00003704126) in the 4th
element (gene) in ex_by_gene:

ex_by_gene[[4]]

GRanges object with 30 ranges and 2 metadata columns:

http://feb2014.archive.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000000003
http://feb2014.archive.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000000003

#Hit segnames ranges strand | exon_id
#it <Rle> <IRanges> <Rle> | <integer>
#i# [1] 1 169818772-169822913 - 55480
#H# [2] 1 169821804-169822913 - 55481
[3] 1 169822215-169822913 - 55482
[4] 1 169823411-169824105 - 55483
(5] 1 169823652-169824105 - 55484
500 50 500 soo o 500
#H# [26] 1 169857817-169858031 - 55505
[27] 1 169857817-169858031 - 55506
[28] 1 169862929-169863076 - 55507
[29] 1 169862929-169863093 - 55508
[30] 1 169863148-169863408 - 55509
exon_name

<character>

#i# [1] ENSE00003704126
#i# [2] ENSE00001445607
#it [3] ENSE00001445605
#i# [4] ENSE00000789668
#i# [5] ENSE00001718821
#i#
#i# [26] ENSE00003606895
#i# [27] ENSE00003656990
#i# [28] ENSE00001021870
#i# [29] ENSE00001819895
#i# [30] ENSE00001762331
-

seqinfo: 722 sequences (1 circular) from an unspecified genome

exonsByGene[[4]]

GRanges object with 29 ranges and 2 metadata columns:

#it segnames ranges strand | exon_id
#i# <Rle> <IRanges> <Rle> | <integer>
[1] 1 169821804-169822913 - 55215
[2] 1 169822215-169822913 - 55216
[3] 1 169823411-169824105 - 55217
[4] 1 169823652-169824105 - 55218
[5] 1 169824937-169825098 - 55219
bao o noo boa o noo
[25] 1 169857817-169858031 - 55240
[26] 1 169857817-169858031 - 55239
[27] 1 169862929-169863076 - 55241
[28] 1 169862929-169863093 - 55242
[29] 1 169863148-169863408 - 55243
#Hit exon_name

#Hit <character>

#it [1] ENSE00001445607
#it [2] ENSE00001445605
#it [3] ENSE00000789668
[4] ENSE00001718821
#i# [5] ENSE00001316145
#it S c.
#it [25] ENSE00003656990

#i# [26] ENSE00003606895

#it [27] ENSE00001021870

#i# [28] ENSE00001819895

#i# [29] ENSE00001762331

-

seqinfo: 580 sequences (1 circular) from an unspecified genome

The annotations provided by Ensembl are updated at each new Ensembl release, which typically happens
2 or 3 times per year. Data contained in the parathyroidSE package was created using an older version of
the Ensembl gene model (Ensembl release 72 according to the vignette).

2.2 Aligned reads from BAM files

The parathyroidSE package contains RNA-seq data from the publication of Haglund et al. [1]. The package
also includes BAM files for 3 of the 27 sequencing runs. The reads in these files are paired-end reads
that were aligned using the TopHat aligner. To keep the package to a reasonable size, only a subset of
all the aligned reads from the experiment have been placed in these files. More information on how
these BAM files were obtained can be found in the vignette located in the parathyroidSE package (type
browseVignettes ("parathyroidSE") in R to get a link to the vignette in your browser).

To get the paths to the BAM files into R, do:

bamdir <- system.file("extdata", package="parathyroidSE")
bamfiles <- list.files(bamdir, pattern="bam$", full.names=TRUE)
bamfiles

[1] "C:/Users/pdmoerland/R/R-3.6.1/library/parathyroidSE/extdata/SRR479052.bam"
[2] "C:/Users/pdmoerland/R/R-3.6.1/library/parathyroidSE/extdata/SRR479053.bam"
[3] "C:/Users/pdmoerland/R/R-3.6.1/1library/parathyroidSE/extdata/SRR479054.bam"

library (Rsamtools)
bamfile_list <- BamFileList(bamfiles, index=character())

Of course, the paths to the BAM files depend on the particular folder in which the parathyroidSE package
is installed on your computer and might be different in your case.

2.3 Counting the reads

Let us now see how aligned reads stored in BAM files can be counted with the summarizeOverlaps func-
tion from the GenomicAlignments package. With this function, the criteria used for assigning reads to genes
are controlled via 2 arguments: the mode and inter.feature arguments. In addition to the help page for
summarizeOverlaps, the “Counting reads with summarizeOverlaps” vignette (located in the GenomicAlign-
ments package and accessible via browseVignettes("GenomicAlignments")) is recommended reading if
you are planning to use this function.

Question 3:
(a) Use summarizeOverlaps on exonsByGene and bamfile_list to count the reads. Check the help page

for the details. Note that because the RNA-seq protocol was not strand specific, you need to specify
ignore.strand=TRUE. Also because the reads are paired-end, you need to specify singleEnd=FALSE.

(b) What is the default option used by summarizeOverlaps to resolve reads that overlap multiple features?
What does this mean?

(c) The call to summarizeOverlaps returned a RangedSummarizedExperiment object containing the matrix
of counts together with information about the genes and samples. The information in a RangedSummarized-
Experiment object can be accessed with so-called accessor functions. For example, to get the read
counts, we use the assay function. Extract the count table by applying the function assay to the
RangedSummarizedExperiment object. What are its dimensions, i.e. how many rows and columns does
the count table have?

Answer 3:

(a) library(GenomicAlignments)
read_count0 <- summarizeOverlaps(exonsByGene, bamfile_list,
ignore.strand=TRUE,
singleEnd=FALSE)
read_countO

class: RangedSummarizedExperiment

dim: 100 3

metadata(0):

assays(l): counts

rownames(100): ENSG0O0000000003 ENSG0O0000000005 ...
ENSG00000005469 ENSG0O0000005471

rowData names(0):

colnames(3): SRR479052.bam SRR479053.bam

SRR479054 . bam

colData names(0):

(b) This is specified by the function argument mode that has "Union" as default value. Reads that overlap
any portion of exactly one feature are counted. Reads that overlap multiple features are discarded.The
other two modes are "IntersectionStrict" and "IntersectionNotEmpty". See the “Counting reads with
summarizeOverlaps” vignette mentioned above for a figure illustrating how simple and gapped reads
are handled by these 3 modes.

(c) head(assay(read_count0))

#it SRR479052.bam SRR479053.bam SRR479054.bam
ENSG00000000003 0 0 1
ENSG0O0000000005 0 0 0
ENSGO0000000419 0 0 0
ENSGO0000000457 0 1 0
ENSGO0000000460 0 0 0
ENSG00000000938 0 0 0

dim(assay(read_count0))

[1] 100 3

Of course the dimensions correspond exactly to what you would expect, since we started out with 100
genes and 3 BAM files.

Question 4: When summarizeOverlaps calls the reading function internally on each BAM file, by default
it does so without specifying additional options for counting and filtering. If you want, for example, to
discard PCR or optical duplicates and secondary alignments you have to define the param argument of
summarizeOverlaps. You can define a suitable value for param using the functions ScanBamParam and
scanBamFlag.

(@) Try to count the reads again but discard PCR or optical duplicates as well as secondary alignments.
Hint: take a careful look at the possible arguments of scanBamFlag (?scanBamFlag is your friend).

(b) What is a secondary alignment?
Answer 4:

(a) To discard PCR or optical duplicates as well as secondary alignments, we use the ScanBamParam func-
tion:

param <- ScanBamParam(flag=scanBamFlag(isDuplicate=FALSE,isSecondaryAlignment=FALSE))
read_countl <- summarizeOverlaps(exonsByGene, bamfile_list,

ignore.strand=TRUE, singleEnd=FALSE, param=param)
read_countl

class: RangedSummarizedExperiment

dim: 100 3

metadata(0):

assays(l): counts

rownames(100): ENSG00000000003 ENSG00000000005 ...
ENSG00000005469 ENSGO0000005471

rowData names(0):

colnames(3): SRR479052.bam SRR479053.bam

#i# SRR479054 . bam

colData names(0):

(b) A secondary alignment (according to the SAM specification) might result when a read aligns to mul-
tiple locations. The best scoring alignment is designated as primary and the others are designated by
the aligner as secondary.

We can now compare the two count tables, as follows:

identical (assay (read_count0) ,assay(read_countl))

[1]1 TRUE

Apparently there is no difference here in the final counts. This means the reads we discarded didn’t
get assigned to any gene the first time we counted (but this wouldn’t necessarily be the case with a
bigger data set).

2.4 Precomputed read counts in the parathyroidSE package

The count tables you generated above were based on a small portion of the data only. The parathyroidSE
package also contains the parathyroidGenesSE data set which contains the counts of reads for all genes
and all sequencing runs.

Question 5: In this exercise, we load the parathyroidGenesSE data set from the parathyroidSE package and
perform some basic manipulations on it.

(a) Load the parathyroidGenesSE data set from the parathyroidSE package.

(b) Like above, extract the count table by applying the function assay to the RangedSummarizedExperiment
object. What are the dimensions of the count table? Display the top left corner of the count table (e.g.
first 6 rows and columns). Does it have row names or column names? What are the row names?

(c) In this matrix of read counts, each row represents an Ensembl gene, each column a sequencing run, and
the values are the raw numbers of reads in each sequencing run that were assigned to the respective
gene. How many reads were assigned to each of the samples? How many genes have non-zero counts?

(d) Use colData on parathyroidGenesSE. What do you get? How many rows does it have? Use the
function table to summarize the number of runs for each treatment (Control, DPN, and OHT).

Answer 5:

(a) Before we load the parathyroidGenesSE data set, we can check what other data sets are contained in
the parathyroidSE package with:

data(package="parathyroidSE")

Load the parathyroidGenesSE data set:

library(parathyroidSE)
data(parathyroidGenesSE)
parathyroidGenesSE

class: RangedSummarizedExperiment

dim: 63193 27

metadata(l): MIAME

assays(l): counts

rownames(63193): ENSG00000000003 ENSGO0000000005 ...
LRG_98 LRG_99

rowData names(0):

colnames: NULL

colData names(8): run experiment ... study sample

(b) dim(assay(parathyroidGenesSE))
[1] 63193 27

The count table has 63193 rows (genes) and 27 sequencing runs.

assay (parathyroidGenesSE) [1:6, 1:6]

(.11 [,2]1 [,3] [,4] [,5] [,6]
ENSG00000000003 792 1064 444 953 519 855
ENSG00000000005 4 1 2 3 3 1
ENSGO0000000419 294 282 164 263 179 217
ENSG00000000457 156 184 93 145 75 122
ENSG00000000460 396 207 210 212 221 173
ENSG00000000938 3 8 2 5 0 4

The row names are Ensembl gene IDs. There are no column names:

10

colnames (parathyroidGenesSE)

NULL
(c) To compute the number of reads that were assigned to each sequencing run, we just need to sum all
the counts that are in a column and do this for each column:

colSums (assay(parathyroidGenesSE))

[1] 9102683 10827109 5217761 9706035 5700022 7854568
[7] 8610014 6844144 5251911 19332369 8267977 5620890
[13] 17969521 8247122 7341000 8064268 12481958 16310090
[19] 23697329 7642648 7701432 7135899 4499893 9318500
[25] 6099942 5505205 10320006

There is a five-fold difference between the runs with the lowest and highest counts. In the exercises on
differential expression analysis, you will see how to take this into account in the statistical analysis.

Genes with non-zero counts:

sum(rowSums (assay (parathyroidGenesSE)) != 0)

[1] 35415

(d) colData(parathyroidGenesSE)

DataFrame with 27 rows and 8 columns

run experiment patient treatment time
<character> <factor> <factor> <factor> <factor>
1 SRR479052 SRX140503 1 Control 24h
2 SRR479053 SRX140504 1 Control 48h
3 SRR479054 SRX140505 1 DPN 24h
4 SRR479055 SRX140506 1 DPN 48h
5 SRR479056 SRX140507 1 OHT 24h
##t ... 000 500 500 500 500
23 SRR479074 SRX140523 4 DPN 48h
24 SRR479075 SRX140523 4 DPN 48h
25 SRR479076 SRX140524 4 OHT 24h
26 SRR479077 SRX140525 4 OHT 48h
27 SRR479078 SRX140525 4 OHT 48h
submission study sample

<factor> <factor> <factor>

1 SRA051611 SRP012167 SRS308865

2 SRA051611 SRP012167 SRS308866

3 SRA051611 SRP012167 SRS308867

4 SRA051611 SRP012167 SRS308868

5 SRA051611 SRP012167 SRS308869

#H ...

23 SRA051611 SRP012167 SRS308885
24 SRAO51611 SRP012167 SRS308885
25 SRA0O51611 SRP012167 SRS308886
26 SRA0O51611 SRP012167 SRS308887
27 SRA0O51611 SRP012167 SRS308887

11

We get a DataFrame object with one row per sequencing run, which gives detailed information about
the sequencing runs (patient ID, treatment, etc...)

table(colData(parathyroidGenesSE) $treatment)

#i#
Control DPN OHT
#i# 7 10 10

3 Differential expression analysis: DESeq2

3.1 Collapsing technical replicates

There are a number of samples which were sequenced in multiple runs. To see this, we extract the ‘sample’
column via the function colData:

colData(parathyroidGenesSE) $sample

[1] SRS308865 SRS308866 SRS308867 SRS308868 SRS308869
[6] SRS308870 SRS308871 SRS308872 SRS308873 SRS308873
[11] SRS308874 SRS308875 SRS308875 SRS308876 SRS308877
[16] SRS308878 SRS308879 SRS308880 SRS308881 SRS308882
[21] SRS308883 SRS308884 SRS308885 SRS308885 SRS308886
[26] SRS308887 SRS308887

23 Levels: SRS308865 SRS308866 SRS308867 ... SRS308887

For example, sample SRS308873 was sequenced twice. It is recommended to first add together techni-
cal replicates (i.e., libraries derived from the same samples), such that we have one column per sample.
Otherwise technical replicates would be considered biological replicates, which would lead to underesti-
mating biological variability and incorrectly reduced p-values. This can be easily done using the function
collapseReplicates from the DESeq2:

library (DESeq2)
parathyroidGenesSE_new <-
collapseReplicates(parathyroidGenesSE,groupby=colData(parathyroidGenesSE)$sample)
Only keep the column data columns that we actually need for our analysis below
colData(parathyroidGenesSE_new) <-
colData(parathyroidGenesSE_new) [, c("patient", "treatment", "time")]

parathyroidGenesSE_new

class: RangedSummarizedExperiment

dim: 63193 23

metadata(l): MIAME

assays(l): counts

rownames(63193): ENSG00000000003 ENSG00000000005 ...
LRG_98 LRG_99

rowData names(0):

colnames(23): SRS308865 SRS308866 ... SRS308886

#it SRS308887

colData names(3): patient treatment time

12

3.2 Running the DESeq2 pipeline

The package DESeq2 provides methods to test for differential expression by use of negative binomial gen-
eralized linear models (see browseVignettes("DESeq2") for a nice and detailed vignette of the package).
This section demonstrates a typical workflow for such an analysis.

On the importance of raw counts

As input, the DESeq2 package expects count data as obtained, e.g., from a RNA-Seq experiment, in the
form of a matrix of integer values. The value in the i-th row and the j-th column of the matrix tells how
many reads have been mapped to gene i in sample ;.

The count values must be raw counts of sequencing reads. This is important for DESeq2’s statistical model
to hold, as only the actual counts allow assessing the measurement precision correctly. Hence, please do
not supply other quantities, such as (rounded) normalized counts, or counts of covered base pairs — this
will only lead to nonsensical results.

Preparing the data to be analyzed

In the previous section we prepared a RangedSummarizedExperiment object parathyroidGenesSE_new that
can readily be used in a DESeq?2 analysis.

First we load the parathyroidGenesSE_new object generated in the previous section:

rooturl <- "http://bioinformatics.amc.nl/wp-content/uploads/"

download.file(pasteO(rooturl,"gs-sequence-analysis//RNASequencing/parathyroidGenesSE_new.zip"),
destfile="parathyroidGenesSE_new.zip")

unzip("parathyroidGenesSE_new.zip")

load("parathyroidGenesSE_new.RData")

Then we create a DESeqDataSet object. This requires specifying a design formula, which tells which
factors in the column metadata table specify the experimental design and how these factors should be
used in the analysis. We specify ~ patient + treatment, which means that we want to test for the effect
of treatment (the last factor), controlling for the effect of patient (the first factor). Here, it is sufficient
to know that using this design formula, we will be performing something that is similar to a paired test
exploiting that cells from the same patient received the same treatments (Control, DPN, OHT). You can
use R’s formula notation to express any experimental design that can be described within an ANOVA-
like framework. Specifying a design formula can be quite intricate for complex experimental designs.
Detailed examples for commonly used designs can be found in the user’s guide of the edgeR package
(type library(edgeR) ;edgeRUsersGuide () to open the PDF).

library (DESeq2)
ddsFull <- DESegDataSet(se = parathyroidGenesSE_new, design = ~ patient + treatment)
ddsFull

class: DESeqDataSet

dim: 63193 23

metadata(2): MIAME version

assays(1l): counts

rownames(63193): ENSG00000000003 ENSGO0000000005 ...
##t LRG_98 LRG_99

rowData names(0):

colnames(23): SRS308865 SRS308866 ... SRS308886

13

#it SRS308887
colData names(3): patient treatment time

Question 6: Here we will analyze a subset of the samples, namely those taken after 48 hours, with either
control or DPN treatment, taking into account the multifactor design. Select only the relevant columns
from the full dataset ddsFull and assign it to variable dds.

Answer 6:

dds <- ddsFull[, colData(ddsFull)$treatment %in% c("Control","DPN") &
colData(ddsFull) $time == "48h"]

Since we selected a subset of the data, it is necessary to "refactor” the factors, since several levels have been
dropped. Here, for example the treatment factor still contains the level "OHT", but no sample for this level:

dds$treatment

[1] Control DPN Control DPN Control DPN Control
[8] DPN
Levels: Control DPN OHT

dds$treatment <- factor(dds$treatment)
dds$treatment

[1] Control DPN Control DPN Control DPN Control
[8] DPN
Levels: Control DPN

D i I) +h S5 TR

t# Do we have e right samples?
colData(dds)

DataFrame with 8 rows and 3 columns

#it patient treatment time
#it <factor> <factor> <factor>
SRS308866 1 Control 48h
SRS308868 1 DPN 48h
SRS308872 2 Control 48h
SRS308874 2 DPN 48h
SRS308878 3 Control 48h
SRS308880 3 DPN 48h
SRS308883 4 Control 48h
SRS308885 4 DPN 48h

A call to the function DESeq would throw an error if we had omitted this step.

DESeq2 analysis

The DESeq2 analysis can now be run with a single call to the function DESeq:

14

dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates

fitting model and testing

This added all kinds of bells and whistles to the dds object, which you will investigate in more detail in
the following sections.

3.3 Inspecting the results table

The results for the last variable in the design formula, in our case the treatment variable, can be extracted
using the results function:

res <- results(dds)
res

log2 fold change (MLE): treatment DPN vs Control

Wald test p-value: treatment DPN vs Control

DataFrame with 63193 rows and 6 columns

#it baseMean log2FoldChange
<numeric> <numeric>
ENSG0O0000000003 623.422704159628 -0.017931994587485
ENSG00000000005 0.680023404967342 -0.749857078573604
ENSG00000000419 299.746242365 -0.0126005895662198
ENSG00000000457 183.502856893626 -0.0907333019834504
ENSG00000000460 200.464220731487 0.372176830780138

##t ... ce R
LRG_94 0 NA
LRG_96 0 NA
LRG_97 0 NA
LRG_98 0 NA
LRG_99 0 NA
1fcSE stat
#it <numeric> <numeric>

ENSG00000000003 0.0916336472442749 -0.19569224980953
ENSGO0000000005 2.59558008676392 -0.288897685106107
ENSG0O0000000419 0.118923623345575 -0.105955311583506
ENSG0O0000000457 0.150737013146947 -0.601931138803968
ENSG00000000460 0.148315172480573 2.50936451446927

#o... R R
LRG_94 NA NA
LRG_96 NA NA
LRG_97 NA NA
LRG_98 NA NA
LRG_99 NA NA
33 pvalue padj

15

<numeric> <numeric>
ENSG0O0000000003 0.8448510508845 0.996948189219851
ENSG0O0000000005 0.772659675252425 NA
ENSG00000000419 0.91561780871385 0.996948189219851
ENSG0O0000000457 0.547219975705456 0.996948189219851
ENSG00000000460 0.0120948603279287 0.276105175792322

... 500 500
LRG_94 NA NA
LRG_96 NA NA
LRG_97 NA NA
LRG_98 NA NA
LRG_99 NA NA

As res is a DataFrame object, it carries metadata with information on the meaning of the columns:

mcols(res)

DataFrame with 6 rows and 2 columns

type
#it <character>
baseMean intermediate
log2FoldChange results
1fcSE results
stat results
pvalue results
padj results
#it description
<character>
baseMean mean of normalized counts for all samples
log2FoldChange log2 fold change (MLE): treatment DPN vs Control
1fcSE standard error: treatment DPN vs Control
stat Wald statistic: treatment DPN vs Control
pvalue Wald test p-value: treatment DPN vs Control
padj BH adjusted p-values

The first column, baseMean, is a just the average of the normalized count values, taken over all samples.
The remaining four columns refer to a specific contrast, namely the comparison of the levels DPN versus
Control of the factor variable treatment. See the help page for results (by typing ?results) for information
on how to obtain other contrasts.

The column log2FoldChange is the effect size estimate. It tells us how much the gene’s expression has
changed due to treatment with DPN in comparison to control. This value is reported on a logarithmic
scale to base 2: for example, a log, fold change of 1.5 means that the gene’s expression is increased by a
factor of 21° &~ 2.82.

Of course, this estimate has an uncertainty associated with it, which is available in the column 1£cSE, the
standard error estimate for the log2 fold change estimate. We can also express the uncertainty of a partic-
ular effect size estimate as the result of a statistical test. The purpose of a test for differential expression
is to test whether the data provides sufficient evidence to conclude that this value is really different from
zero (and that the sign is correct). DESeq2 performs for each gene a hypothesis test to see whether evidence
is sufficient to decide against the null hypothesis that there is no effect of the treatment on the gene and that
the observed difference between treatment and control was merely caused by experimental variability (i.e.,
the type of variability that you can just as well expect between different samples in the same treatment
group). As usual in statistics, the result of this test is reported as a p-value, and it is found in the column

16

pvalue. (Remember that a p-value indicates the probability that a fold change as strong as the observed
one, or even stronger, would be seen under the situation described by the null hypothesis.)

Finally, we note that a subset of the p-values in res are NA (“not available”). This is DESeq’s way of reporting
that all counts for this gene were zero, and hence no test was applied.

Question 7: The function DESeq takes the different library sizes into account in its statistical model. The
estimated size factors estimated for this purpose have been included in the column metadata of the dds
object.

colData(dds)$sizeFactor

SRS308866 SRS308868 SRS308872 SRS308874 SRS308878 SRS308880
1.0765936 0.9932643 0.6706964 0.8010918 0.8652826 1.7399298
SRS308883 SRS308885
0.8295786 1.4777134

(a) The function DESeq uses a robust method to estimate the size factors. Calculate the factors that you
would obtain if you would normalize each sequencing run with respect to the average number of
counts.

(b) Compare the values for both methods. Do you expect that the choice of normalization method will
have a large effect on the down-stream analysis in this case?

(c) Check to see if the baseMean is indeed the mean of raw counts or the mean of normalized counts (hint:
use the counts function)?

Answer 7:

(a) colSums(assay(dds))/mean(colSums (assay(dds)))

SRS308866 SRS308868 SRS308872 SRS308874 SRS308878 SRS308880
1.0622695 0.9522787 0.6714928 0.8111879 0.7912016 1.6002159
SRS308883 SRS308885
0.7556031 1.3557505

(b) Using the robust method, each column is divided by the geometric means of the rows. The median
of these ratios is then used as the size factor for this column. This avoids that the size factors are
heavily influenced by a few highly and differentially expressed genes, which might be the case when
normalizing with respect to the total number of counts. Differences between the two size factors seem
relatively modest in this case, so a large effect on the down-stream analysis is not expected.

(c) The raw counts and normalized counts of a DESeqDataSet object are available via the accessor function
counts, which has an argument normalized with default value FALSE. Here we look at the range (that
is, the minimum and the maximal value) of the differences of the two vectors:

range (res$baseMean - rowMeans(counts(dds)))

[1] -8581.195 19828.664

range (res$baseMean - rowMeans (counts(dds,normalized=TRUE)))
[11 0 0

So baseMean is the mean of the normalized counts.

17

3.4 Multiple testing

Novices in high-throughput biology often assume that thresholding p-values at 0.05, as is often done in
other settings, would be appropriate — but it is not. We briefly explain why:

There are 906 genes with a p-value below 0.05 among the 30434 genes, for which the test succeeded in
reporting a p-value:

sum(res$pvalue < 0.05, na.rm=TRUE)
[1] 906
table(is.na(res$pvalue))

#i#
FALSE TRUE
30434 32759

Now, assume for a moment that the null hypothesis is true for all genes, i.e., no gene is affected by the
treatment with DPN. Then, by the definition of p-value, we expect up to 5% of the genes to have a p-value
below 0.05. This amounts to 1522 genes. If we just considered the list of genes with a p-value below 0.05
as differentially expressed, this list should therefore be expected to contain up to 1522/906 = 168% (let’s
say 100%) false positives!

DESeq2 uses the so-called Benjamini-Hochberg (BH) adjustment; in brief, this method calculates for each
gene an adjusted p-value which answers the following question: if one called significant all genes with a
p-value less than or equal to this gene’s p-value threshold, what would be the fraction of false positives
(the false discovery rate, FDR) among them (in the sense of the calculation outlined above)? These values,
called the BH-adjusted p-values, are given in the column padj of the results object.

Hence, if we consider a fraction of 10% false positives acceptable, we can consider all genes with an adjusted
p-value below 10%=0.1 as significant. How many such genes are there?

sum(res$padj < 0.1, na.rm=TRUE)

[1] 236

We subset the results table to these genes and then sort it by the log2-fold-change estimate to get the
significant genes with the strongest down-regulation

resSig <- res[which(res$padj < 0.1),]
head(resSig[order(resSig$log2FoldChange),])

#it
#it
#it
#i#
#it

log2 fold change (MLE): treatment DPN vs Control

Wald test p-value: treatment DPN vs Control

DataFrame with 6 rows and 6 columns
baseMean log2FoldChange

<numeric> <numeric>

i
#it
#it
#i#
#i#
33

ENSG00000163631
ENSG00000145244
ENSG00000169239
ENSG00000041982
ENSG00000119946
ENSG00000155111

268.836661246947
173.331658179128
1547.61140356092
1493.26304568347
183.490954769971
587.892288902484

-0.97188763049082

-0.816530762063189

-0.76866722484542
-0.70389211528266

-0.699677506586409
-0.675326192945983

18

1fcSE stat
<numeric> <numeric>
ENSG00000163631 0.151829596999077 -6.40117374807183
ENSG00000145244 0.237157384161872 -3.44299109618221
ENSG00000169239 0.0911072796563921 -8.43694628732656
ENSG00000041982 0.0857431291127707 -8.20931219289758
ENSG00000119946 0.166147415129077 -4.21118502531528
ENSG00000155111 0.0987865765718096 -6.83621415360089
#i# pvalue padj
#it <numeric> <numeric>
ENSG00000163631 1.54186988030729e-10 1.1669582886418e-07
ENSG00000145244 0.000575318254978076 0.0347273393296275
ENSG00000169239 3.2573606261897e-17 1.06830570670268e-13
ENSG00000041982 2.22459126174234e-16 5.47193835607071e-13
ENSG00000119946 2.54034568821995e-05 0.00320441810594822
ENSG00000155111 8.13133630488576e-12 8.88935754486344e-09

and with the strongest upregulation

tail(resSigl[order(resSig$log2FoldChange),])

log2 fold change (MLE): treatment DPN vs Control

Wald test p-value: treatment DPN vs Control

DataFrame with 6 rows and 6 columns

baseMean log2FoldChange

#it <numeric> <numeric>

ENSG00000158457 301.551036962356 0.622084934994109

ENSG00000159307 258.895063901787 0.633776974537171

ENSG00000156414 136.907007840686 0.7832401157074

ENSG00000103257 168.152231856987 0.823774509133976

ENSG00000101255 284.997129109888 0.879295115645584

ENSG00000092621 594.182981210876 0.918414129671324

#it 1fcSE stat

#i# <numeric> <numeric>

ENSG00000158457 0.161437806114784 3.8534030532588

ENSG00000159307 0.14753572306804 4.29575265811987

ENSG00000156414 0.181358524007566 4.31873891780639

ENSG00000103257 0.171008811943237 4.81714655387122

ENSG00000101255 0.159616385918632 5.50880231114757

ENSG00000092621 0.12216463853399 7.51783937391829

#it pvalue padj
#it <numeric> <numeric>
ENSG00000158457 0.000116487398849416 0.0105916926874801
ENSG00000159307 1.74101617734789e-05 0.00231484569850349
ENSG00000156414 1.56923284505185e-05 0.00211502492636509
ENSG00000103257 1.45625731150969e-06 0.000333211992742879
ENSG00000101255 3.6128335874206e-08 1.2695239166654e-05
ENSG00000092621 5.56888600703128e-14 7.82746706045439%e-11

Question 8: What is the proportion of down- and up-regulation among the genes with adjusted p-value

less than 0.1?

Answer 8:

19

ENSG00000044574

_| o
o
o _|
— o
c ©
3] o
o 0
o} o
o
8 g ©
©
e — o)
S
o
c o
S - o
Q
()
[[
Control DPN

group

Figure 1: Normalized counts for the gene with the smallest p-value in the comparison of DPN versus
control treatment.

table(sign(resSig$log2FoldChange))

#it
-1 1
132 104

Of course it is often useful to visualize the counts of reads for a single gene across the treatments. Here
we use the function plotCounts and specify the gene which had the smallest p-value in the results table
created above (Fig. [I)):

plotCounts(dds, gene=which.min(res$pvalue), intgroup="treatment")

3.5 Diagnostic plots
A so-called MA-plot provides a useful overview for an experiment with a two-group comparison:

plotMA(dds, ylim = c(-0.75, 0.75))

The plot (Fig. [2) represents each gene with a dot. The x axis is the average expression over all samples,
the y axis the log, fold change between treatment and control. Genes with an adjusted p-value below a
threshold (here 0.1, the default) are shown in red.

20

0.5

log fold change
0.0

le-01 le+01 1le+03 le+05

mean of normalized counts

Figure 2: The MA-plot shows the log, fold changes from the treatment over the mean of normalized
counts, i.e. the average of counts normalized by size factor. Points are colored red if the adjusted p-value
is less than 0.1. Points which fall out of the window are plotted as open triangles pointing either up or

down.

21

This plot demonstrates that only genes with an average normalized count above 100 contain sufficient
information to yield a significant call, and only above about 1000 counts can smaller fold-changes become
significant.

It is actually more useful to visualize the MA-plot for the shrunken log fold changes (LFC). When count
values are too low to allow an accurate estimate of the LFCs, the value is “shrunken” towards zero to
avoid that these values, which otherwise would frequently be unrealistically large, dominate the top-
ranked log fold changes. To shrink the LFCs, we pass the dds object to the function 1fcShrink indicating
the comparison of interest:

resLFC <- 1fcShrink(dds, coef="treatment_DPN_vs_Control")

using ’normal’ for LFC shrinkage, the Normal prior from Love et al (2014).

##

Note that type=’apeglm’ and type=’ashr’ have shown to have less bias than type=’normal’.
See ?lfcShrink for more details on shrinkage type, and the DESeql wvignette.

Reference: https://doi.org/10.1093/bioinformatics/bty895

The MA-plot for the LFCs (Fig. B) is then created as follows:

plotMA(resLFC, ylim = c(-0.75, 0.75))

Whether a gene is called significant depends not only on its LFC but also on its within-group variability,
which DESeq2 quantifies as the dispersion. For strongly expressed genes, the dispersion can be understood
as a squared coefficient of variation: a dispersion value of 0.01 means that the gene’s expression tends
to differ by typically +/0.01 = 10% between samples of the same treatment group. For weakly expressed
genes, the Poisson noise is an additional source of noise, which is added to the dispersion.

The function plotDispEsts visualizes DESeq2’s dispersion estimates (Fig. E]):

plotDispEsts(dds)

The black dots are the dispersion estimates for each gene as obtained by considering the information from
each gene separately. Unless one has many samples, these values fluctuate strongly around their true
values. Therefore, we fit the red trend line, which shows the dispersions” dependence on the mean, and
then shrink each gene’s estimate towards the red line to obtain the final estimates (blue circles) that are
then used in the hypothesis test.

Another useful diagnostic plot is the histogram of the p-values (Fig.).

hist(res$pvalue, breaks=100)

Question 9: Revisit the discussion about p-values and multiple testing in the previous section. Which part
of the histogram is caused by genes that are called significant? And which part is caused by those that are
truly significant? Why are there “spikes” at intermediate values?

Answer 9: Genes that are not differentially expressed have p-values that are approximately uniformly
distributed between 0 and 1. This gives rise to the floor of bars of equal heights. The truly differentially
expressed genes give rise to the tall bar(s) at the very left — but only to that part of the bars that raises
above the uniform floor. Of course, we cannot know which of the genes in these tall bars are true ones and
which are not. When only looking at the bars to the left of our chosen p-value cut-off, the ratio of “floor”
area to total area provides an estimate of the false discovery rate. This is a graphical way of understanding
FDR.

The rule that p-values from null cases are uniform is true only for continuous test statistics. How-
ever, for genes with low counts, the fact that we are working with integer counts becomes noticeable,

22

o

)

C

2

o <9 _

T O

o

g

= 0
S

I I I I
le-01 le+01 1le+03 le+05

mean of normalized counts

Figure 3: The MA-plot shows the shrunken log, fold changes from the treatment over the mean of nor-
malized counts, i.e. the average of counts normalized by size factor. Points are colored red if the adjusted
p-value is less than 0.1. Points which fall out of the window are plotted as open triangles pointing either
up or down. Shrinkage incorporates a prior on log, fold changes, resulting in moderated estimates from
genes with low counts and highly variable counts, as can be seen by the narrowing of the vertical spread

of points on the left side of the plot.

23

1e+00
|

dispersion
le-04

_ T . ® gene-est
e fitted
$ B . . e final
& [[[[
le-01 le+01 1le+03 le+05

mean of normalized counts

Figure 4: Plot of dispersion estimates. See text for details.

Histogram of res$pvalue

o
> O _|
O
[|
(]

)
o _]
()]
p —
LL

o

o_

mIIThWTHIWmTWﬂIIﬂIIIIIIﬂIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII III

O_

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

res$pvalue

Figure 5: Histogram of the p-values returned by the test for differential expression.

24

and gives rise to the spikes at intermediate p-values. See http://varianceexplained.org/statistics/
interpreting-pvalue-histogram/|for more information on how to interpret p-value histograms.

3.6 Exploratory analysis

Many common statistical methods for exploratory analysis of multidimensional data, especially methods
for clustering and ordination (e. g., principal-component analysis), work best for (at least approximately)
homoskedastic data; this means that the variance of an observable (i.e., here, the expression strength of
a gene) does not depend on the mean. In RNA-Seq data, however, variance grows with the mean. For
example, if one performs PCA directly on a matrix of normalized read counts, the result typically depends
only on the few most strongly expressed genes because they show the largest absolute differences between
samples. A simple and often used strategy to avoid this is to take the logarithm of the normalized count
values; however, now the genes with low counts tend to dominate the results because, due to the strong
Poisson noise inherent to small count values, they show the strongest relative differences between samples.

As a solution, DESeq?2 offers the regularized-logarithm transformation, or rlog for short. For genes with high
counts, the rlog transformation differs not much from an ordinary log, transformation. For genes with
lower counts, however, the values are shrunken towards the genes’ averages across all samples. Using an
empirical Bayesian prior in the form of a ridge penality, this is done such that the rlog-transformed data are
approximately homoskedastic.

The function rlogTransform returns a DESeqTransform object which contains the rlog-transformed values
in its assay slot:

rld <- rlogTransformation(dds)
head(assay(rld))

SRS308866 SRS308868 SRS308872 SRS308874
ENSG00000000003 9.7281273 9.6975828 9.1310119 9.1894125
ENSG00000000005 -0.6610708 -0.5302481 -0.6338938 -0.7231434
ENSG0O0000000419 8.0983673 8.1085864 8.2400300 8.2911769
ENSG0O0000000457 7.4439013 7.3018366 7.8173333 7.7094949
ENSG0O0000000460 7.5733354 7.6718827 7.9893714 8.1747855
ENSG00000000938 3.2943821 3.1750959 4.0677929 3.6405037
SRS308878 SRS308880 SRS308883 SRS308885

ENSGO0000000003 8.952581 8.8604213 9.0904959 9.1108783

ENSGO0000000005 -0.724811 -0.7306887 -0.7243747 -0.7295391

ENSG00000000419 8.302976 8.3084428 8.2650841 8.1707219
ENSG00000000457 7.220910 7.3417436 7.6014490 7.4952816
ENSG00000000460 7.133437 7.4527080 7.0154215 7.3733657
ENSG00000000938 3.096320 3.4243846 3.3973629 3.5014756

A popular way to visualize sample-to-sample distances is a principal-components analysis (PCA). In this
ordination method, the data points (i.e., here, the samples) are projected onto the 2D plane such that they
spread out optimally (Fig. [6).

print(plotPCA(rld, intgroup = c("patient", "treatment")))

Here, we have used the function plotPCA which comes with DESeq2. The two terms specified as intgroup
are column names from our sample data; they tell the function to use them to choose colours.

From the PCA plot, we see that the difference between patients is much larger than the difference between
treatment and control samples of the same patient. This shows why it was important to account for this
paired design (“paired”, because each treated sample is paired with one control sample from the same

25

http://varianceexplained.org/statistics/interpreting-pvalue-histogram/
http://varianceexplained.org/statistics/interpreting-pvalue-histogram/

group

1:Control
Q 10-
2 ® ® 1DPN
crs
§ ® 2:Control
R\On 0- ® 2:DPN
N ® 3:Control
&
O _10- ® ® 3.DPN
o
4:Control
¢ , , 4:DPN
-20 0 20

PC1: 61% variance

Figure 6: The PCA plot shows that the difference between patients is much greater than the difference
between treatments

patient). We did so by using the design formula ~ patient + treatment when setting up the data object
in the beginning. Had we used an un-paired analysis, by specifying only ~ treatment, we would not have
found many hits, because then, the patient-to-patient differences would have drowned out any treatment
effects.

Question 10: How many genes differentially expressed with an adjusted p-value below 0.1 would you
have found with a design that ignores the pairing of the samples?

Answer 10:
ddsFull <- DESeqgDataSet(se = parathyroidGenesSE_new, design = ~ treatment)
dds <- ddsFull[, colData(ddsFull)$treatment %in), c("Control","DPN") &

colData(ddsFull) $time == "48h"]
dds$treatment <- factor(dds$treatment)
dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise disperstion estimates
mean-dispersion relationship
final dispersion estimates

fitting model and testing

res <- results(dds)
sum(res$padj < 0.1, na.rm=TRUE)

26

[1] O

Here, we have performed the exploratory data analysis towards the end of our analysis. In practice,
however, this is a step suitable to give a first overview on the data. Hence, one will typically carry out this
analysis as one of the first steps.

Now try to perform the same analysis as above using BioJupies (https://maayanlab.cloud/biojupies/).
BioJupies is a web server that automatically generates RNA-seq data analysis notebooks. The data of
Haglund et al. [1] can be found in BioJupies by searching for GSE37211. Compare and contrast the analyses
that you performed above with the results that you obtain with BioJupies.

4 Further pointers

Worked out solutions and code for the exercises can be found at https://bioinformatics.amc.nl/
education/gs-bioinformatics-sequence-analysis/

5 System requirements

5.1 Installation of required R/Bioconductor packages

For the LO/LO01 desktops only. See the mail I sent earlier this week for installation instructions for the
CDW or your own laptop:

* Open R version 3.4.4 or RStudio.
* Now you’ll have to install a number of Bioconductor packages:

1. type .1libPaths("C:/Scratch") at the R prompt
2. Type source("http://bioconductor.org/biocLite.R") at the R prompt

3. Install the following packages via biocLite(c("BiocParallel","DESeq2","edgeR",
"GenomicAlignments","GenomicFeatures","parathyroidSE","Rsamtools")).

n_n

4. If you are asked "Update all/some/none? [a/s/n]:", answer "n".

6 Session info

As last part of this document, we call the function sessionInfo, which reports the version numbers of R
and all the packages used in this session. It is good practice to always keep such a record as it will help to
trace down what has happened in case that an R script ceases to work because a package has been changed
in a newer version.

R version 3.6.1 (2019-07-05)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows 7 x64 (build 7601) Service Pack 1
i

Matrix products: default

#it

locale:

[1] LC_COLLATE=English_United Kingdom.1252

[2] LC_CTYPE=English_United Kingdom.1252

27

https://maayanlab.cloud/biojupies/
https://bioinformatics.amc.nl/education/gs-bioinformatics-sequence-analysis/
https://bioinformatics.amc.nl/education/gs-bioinformatics-sequence-analysis/

##
i
#it
#it
##
##
##
#it
#it
#t
#
##
i
#it
#it
##
##
i
#it
#it
#t
##
##
i
#it
#
##
##
#it
#it
#it
#
##
##
#it
#it
##
##
##
i
#it
#
##
##
#it
#it
#it
##
##
##
#it
#it
#it

[3] LC_MONETARY=English_United Kingdom.1252
[4] LC_NUMERIC=C
[6] LC_TIME=English_United Kingdom.1252

attached base packages:

[1] stats4 parallel stats graphics grDevices
[6] utils datasets methods base
other attached packages:

[1]
[3]
[5]
[7]
[9]
[11]
[13]
[15]
[17]
[19]

DESeq2_1.26.0
Rsamtools_2.2.3
XVector_0.26.0

SummarizedExperiment_1.

BiocParallel_1.20.1
GenomicFeatures_1.38.2
Biobase_2.46.0
GenomeInfoDb_1.22.0
S4Vectors_0.24.0
knitr_1.25

GenomicAlignments_1.22.1
Biostrings_2.54.0
parathyroidSE_1.24.0
16.1 DelayedArray_0.12.2
matrixStats_0.55.0
AnnotationDbi_1.48.
GenomicRanges_1.38.
IRanges_2.20.0
BiocGenerics_0.32.0

0
0

loaded via a namespace (and not attached):

[1]

[3]

[5]

[7]

[9]
[11]
[13]
[15]
[17]
[19]
[21]
[23]
[25]
[27]
[29]
[31]
[33]
[35]
[37]
[39]
[41]
[43]
[45]
[47]
[49]
[51]
[53]
[55]
[57]
[59]
[61]
[63]

bitops_1.0-6
RColorBrewer_1.1-2
httr_1.4.1
backports_1.1.5
rpart_4.1-15
DBI_1.1.0
nnet_7.3-12
gridExtra_2.3
bit_1.1-14
compiler_3.6.1
labeling_ 0.3
scales_1.0.0
genefilter_1.68.0
rappdirs_0.3.1
digest_0.6.22
base64enc_0.1-3
htmltools_0.4.0
highr_0.8
rlang_0.4.10
RSQLite_2.1.2
dplyr_0.8.3
magrittr_1.5
Formula_1.2-3
Rcpp_1.0.2
lifecycle_1.0.0
zlibbioc_1.32.0
grid_3.6.1
crayon_1.3.4
splines_3.6.1
hms_0.5.2
pillar_1.4.7
codetools_0.2-16

bit64_0.9-7
progress_1.2.2
tools_3.6.1
R6_2.4.0
Hmisc_4.3-1
colorspace_1.4-1
tidyselect_1.1.0
prettyunits_1.0.2
curl_4.2
htmlTable_1.13.2
rtracklayer_1.46.0
checkmate_1.9.4
askpass_1.1
stringr_1.4.0
foreign_0.8-71
pkgconfig_2.0.3
dbplyr_1.4.2
htmlwidgets_1.5.3
rstudioapi_0.10
acepack_1.4.1
RCurl_1.95-4.12
GenomeInfoDbData_1.2.2
Matrix_1.2-17
munsell_0.5.0
stringi_1.4.3
BiocFileCache_1.10.2
blob_1.2.0
lattice_0.20-41
annotate_1.64.0
locfit_1.5-9.1
geneplotter_1.64.0
biomaRt_2.42.0

28

[65] XML_3.99-0.3 glue_1.3.1

[67] evaluate_0.14 latticeExtra_0.6-28
[69] data.table_1.12.6 vctrs_0.3.6

[71] gtable_0.3.0 openssl_1.4.1

[73] purrr_0.3.3 assertthat_0.2.1

[75] ggplot2_3.3.3 xfun_0.21

[77] xtable_1.8-4 survival_3.1-8

[79] tibble_3.0.6 snow_0.4-3

[81] memoise_1.1.0 cluster_2.1.0

[83] ellipsis_0.3.0

Acknowledgements

I would like to thank the Bioconductor community (in particular, Hervé Pages, Michael Love, Simon
Anders, Wolfgang Huber, Sean Davis, Mark Robinson and Gordon Smyth) for providing the packages,
vignettes and course material that formed the basis for these exercises.

References

[1] Felix Haglund, Ran Ma, Mikael Huss, Lugman Sulaiman, Ming Lu, Inga-Lena Nilsson, Anders Hoog,
Christofer C. Juhlin, Johan Hartman, and Catharina Larsson. Evidence of a Functional Estrogen Re-
ceptor in Parathyroid Adenomas. Journal of Clinical Endocrinology & Metabolism, September 2012.

29

	1 Introduction
	2 Creating a count table
	2.1 Choosing and loading a gene model
	2.2 Aligned reads from BAM files
	2.3 Counting the reads
	2.4 Precomputed read counts in the parathyroidSE package

	3 Differential expression analysis: DESeq2
	3.1 Collapsing technical replicates
	3.2 Running the DESeq2 pipeline
	3.3 Inspecting the results table
	3.4 Multiple testing
	3.5 Diagnostic plots
	3.6 Exploratory analysis

	4 Further pointers
	5 System requirements
	5.1 Installation of required R/Bioconductor packages

	6 Session info

